1,
a) |x| + |y + 1| =0
Ta có: |x| \(\ge\) 0 (Với x \(\in\) Z)
|y + 1| \(\ge\) 0 (Với y\(\in\) Z)
\(\Rightarrow\) |x| + |y + 1| \(\ge\) 0
Dấu "=" xảy ra (=):
\(\left\{\begin{matrix}\left|x\right|=0\\\left|y+1\right|=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=0\\y+1=0\end{matrix}\right.\Rightarrow}\left\{\begin{matrix}x=0\\y=0-1\end{matrix}\right.\Rightarrow}\left\{\begin{matrix}x=0\\y=-1\end{matrix}\right.\)
Vậy x = 0; y = -1
b) (2 - x)4 = 81
\(\Rightarrow\) (2 - x)4 = 34 = (-3)4
\(\Rightarrow\) \(\left[\begin{matrix}2-x=3\\2-x=-3\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2-3\\x=2-\left(-3\right)\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy: x \(\in\) {-1; 5}
c) |x - 1| + (-3) = 17
\(\Rightarrow\) |x - 1| = 17 - (-3)
\(\Rightarrow\) |x - 1| = 20
\(\Rightarrow\left[\begin{matrix}x-1=-20\\x-1=20\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-20+1\\x=20+1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-19\\x=21\end{matrix}\right.\)
Vậy: x \(\in\) {-19; 21}
d) 3 - (17 - x) = 289 - (36 + 289)
\(\Rightarrow\) 3 - (17 - x) = 289 - 36 - 289
\(\Rightarrow\) 3 - (17 - x) = 289 - 289 - 36
\(\Rightarrow\) 3 - (17 - x) = 0 - 36
\(\Rightarrow\) 3 - (17 - x) = -36
\(\Rightarrow\) 17 - x = 3 - (-36)
\(\Rightarrow\) 17 - x = 39
\(\Rightarrow\) x = 17 - 39
\(\Rightarrow\) x = -22
Vậy: x = -22
e) 25 - (x + 5) = -415 - (15 - 415)
\(\Rightarrow\) 25 - (x + 5) = -415 - 15 + 415
\(\Rightarrow\) 25 - (x + 5) = (-415 + 415) - 15
\(\Rightarrow\) 25 - (x + 5) = 0 - 15
\(\Rightarrow\) 25 - (x + 5) = -15
\(\Rightarrow\) x + 5 = 25 - (-15)
\(\Rightarrow\) x + 5 = 40
\(\Rightarrow\) x = 40 -5
\(\Rightarrow\) x = 35
Vậy: x = 35
f) 34 + (21 - x) = (3747 - 30) - 3746
\(\Rightarrow\) 34 + (21 - x) = 3747 - 30 - 3746
\(\Rightarrow\) 34 + (21 - x) = 3747 - 3746 - 30
\(\Rightarrow\) 34 + (21 - x) = 1 - 30
\(\Rightarrow\) 34 + (21 - x) = -29
\(\Rightarrow\) 21 - x = -29 - 34
\(\Rightarrow\) 21 - x = -63
\(\Rightarrow\) x = 21 - (-63)
\(\Rightarrow\) x = 84
Vậy: x = 84