Ta có hình vẽ:
a/ Xét tam giác AMB và tam giác CME có:
BM = MC (GT)
AM = ME (GT)
\(\widehat{AMB}\) =\(\widehat{CME}\) (đối đỉnh)
=> tam giác AMB = tam giác CME (c.g.c)
=> AB = CE (2 cạnh tương ứng) (đpcm)
b/ Ta có:
AM = MC (vì tam giác AMB = tam giác CME)
=> tam giác AMC là tam giác cân vì AM = MC
=> \(\widehat{MAC}\)=\(\widehat{MCA}\) (vì tam giác AMC cân) (1)
Mà \(\widehat{MAB}\)=\(\widehat{MCE}\) (tam giác AMB = tam giác CME) (2)
Từ (1), (2) => \(\widehat{A}\) =\(\widehat{C}\)
Mà \(\widehat{A}\)= 900 => \(\widehat{C}\) = 900
Vậy CE \(\perp\)AC (đpcm)
c/ Xét tam giác ABC và tam giác CEA có:
AB = CE (câu a)
AC: chung
\(\widehat{A}\)=\(\widehat{C}\) = 900 (đã chứng minh)
Vậy tam giác ABC = tam giác CEA (c.g.c)