HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) Ta có: A = 3n + 2 + 2014b2
= 3n + 3 + 2013b2 + b2 - 1
= 3(n + 1 + 671b2) + (b - 1)(b + 1)
Vì b là số nguyên tố khác 3 nên b có dạng 6m - 1, 6m + 1 (m ∈ N*)
*Với b = 6m - 1 thì (b - 1)(b + 1) = (6m - 2)6m ⋮ 3
*Với b = 6m + 1 thì (b - 1)(b + 1) = 6m(6m + 2) ⋮ 3
Do đó: (b - 1)(b + 1) ⋮ 3 với mọi b là số nguyên tố khác 3.
Suy ra A = 3(n + 1 + 671b2) + (b - 1)(b + 1) ⋮ 3
Vậy A là hợp số với mọi b là số nguyên tố khác 3 và n ∈ N.
Ta có: \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Leftrightarrow\left[\left(x-1\right)^{10}\right]^2+\left[\left(y+2\right)^{15}\right]^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^{10}=0\\\left(y+2\right)^{15}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay x=1, y = -2 vào biểu thức A ta được A= 38
a)6,12,8
b)6,12,8
A B C D E F H
Kẻ DH // AB (\(H\in BC\))
Vì \(\Delta ABC\) có DH // AB nên theo định lí Ta-lét ta có:
\(\dfrac{AC}{AD}=\dfrac{BC}{BH}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{AD}{BH}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{EB}{BH}\) (1) (Vì AD = EB)
Trong tam giác EDH có BF // DH (vì AB // DH) nên theo định lí Ta-lét ta có: \(\dfrac{EB}{BH}=\dfrac{EF}{FD}\) (2)
Từ (1), (2) suy ra: \(\dfrac{AC}{BC}=\dfrac{EF}{FD}\)