a) Đặt ƯCLN(n+1; 2n+3) = d
\(\Rightarrow\left\{\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\) \(\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Leftrightarrow d\inƯ_{\left(1\right)}=1\)
Vậy phân số \(\frac{n+1}{2n+3}\) tối giản với mọi \(n\in N\).
b) Đặt ƯCLN(2n+3; 4n+8) = d.
\(\Rightarrow\left\{\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\Leftrightarrow d\inƯ_{\left(2\right)}=\left\{1;2\right\}\)
Mà \(2n+3=2n+2+1\) có \(2n+2⋮2\) nhưng \(1⋮̸2\)
\(\Rightarrow d=1\)
Vậy phân số \(\frac{2n+3}{4n+8}\) tối giản với mọi \(n\in N\).
c) Đặt ƯCLN(3n+2; 5n+3) = d.
\(\Rightarrow\left\{\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d\inƯ_{\left(1\right)}=1\)
Vậy phân số \(\frac{3n+2}{5n+3}\) tối giản với mọi \(n\in N\).