HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Đề bài sai, giả sử a = 2 => a2-2=2 không chia hết cho 6
Dấu "=" xảy ra khi và chỉ khi x = 2
Vậy Max A = 7 <=> x = 2
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{3}{2}\)
Vậy Min B = \(-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)
Vậy Max C = \(\frac{1}{12}\Leftrightarrow x=\frac{1}{6}\)
y : 0,04 + y x 3/2 - y x 6,5 = y ; 4 / 100 + y x 1,5 - y x 6,5 = 2014
= y x 25 + y x 1,5 - y x 6,5 = 2014
y x ( 25 + 1,5 - 6,5 ) = 2014
y x 20 = 2014
y = 2014 : 20 = 100,7
Mình xin lỗi nhé, để mình sửa lại : ^^
a) \(x^4+3x^2+4=\left(x^4+x^3+2x^2\right)+-\left(x^3+x^2+2x\right)+2\left(x^2+2x+2\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=\left(x^2-x+2\right)\left(x^2+x+2\right)\)
b) \(x^4+5x^2+9=\left(x^4+x^3+3x^2\right)-\left(x^3+x^2+3x\right)+3\left(x^2+x+3\right)\)
\(=x^2\left(x^2+x+3\right)-x\left(x^2+x+3\right)+3\left(x^2+x+3\right)=\left(x^2-x+3\right)\left(x^2+x+3\right)\)
cách giải
để a421b chia hết cho 2,5,9 thì a421b phải chia hết cho 2 và 5 nên b=0
=> a421b=a4210
để a4210 chia hết cho 9 thì a+4+2+1 (0<a<10)
nên a+4+2+1=a+7 => a chỉ có thể =2
vậy a421b=24210
lưu ý, => là suy ra
Cách 2 : Ta có : \(B^2=\left(\sqrt{x-5}+\sqrt{23-x}\right)^2=18+2\sqrt{x-5}.\sqrt{23-x}\)
Áp dụng bất đẳng thức Cauchy, ta có : \(2\sqrt{x-5}.\sqrt{23-x}\le x-5+23-x=18\)
\(\Rightarrow B^2\le18+18=36\Rightarrow B\le6\) . Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}5\le x\le23\\x-5=23-x\end{cases}\) \(\Leftrightarrow x=14\)
Vậy B đạt giá trị lớn nhất bằng 6 khi và chỉ khi x = 14
81;60;29;25;21;19
\(x^2-2x+\sqrt{2x^2+1}=\sqrt{4x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{4}\) )
\(\Leftrightarrow2x^2-4x+2\sqrt{2x^2+1}-2\sqrt{4x+1}=0\)
\(\Leftrightarrow\left[\left(2x^2+1\right)+2\sqrt{2x^2+1}+1\right]-\left[\left(4x+1\right)+2\sqrt{4x+1}+1\right]=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+1}+1\right)^2-\left(\sqrt{4x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+1}+1-\sqrt{4x+1}-1\right)\left(\sqrt{2x^2+1}+1+\sqrt{4x+1}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+1}-\sqrt{4x+1}\right)\left(\sqrt{2x^2+1}+\sqrt{4x+1}+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{2x^2+1}-\sqrt{4x+1}=0\\\sqrt{2x^2+1}+\sqrt{4x+1}+2=0\end{array}\right.\)
Vì \(\sqrt{2x^2+1}+\sqrt{4x+1}+2>0\) với mọi \(x\ge-\frac{1}{4}\) nên vô nghiệm.
Do đó ta xét \(\sqrt{2x^2+1}-\sqrt{4x+1}=0\Leftrightarrow2x^2+1=4x+1\Leftrightarrow2x\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\) (thoả mãn)
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{x+\sqrt{x}}-\frac{2}{1-x}\right)\) (ĐKXĐ : \(x>0;x\ne1;x\ne\frac{1}{9}\) )
\(=\left[\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}{3\sqrt{x}-1}\)
gọi 3 số đó lần lượt là n ; n+1 ; n+2 , ta có :
n2 + ( n + 1 )2 + ( n + 2 )2 = 77 => 3n2 + 6n + 5 = 77 => 3n( n + 2) =72 => n( n +2 ) = 24
Dễ dàng giải được n = 4 ( vì n là số tự nhiên ). Vậy 3 số cần tìm là 4 ;5 ;6.
Có thể gọi 3 ssos đó là n-1 ; n ; n+1 để phương trình đơn giản hơn