Học tại trường Chưa có thông tin
Đến từ Nghệ An , Chưa có thông tin
Số lượng câu hỏi 2
Số lượng câu trả lời 940
Điểm GP 248
Điểm SP 1264

Người theo dõi (347)

Đang theo dõi (8)


Câu trả lời:

Bài 1:

a)

*) Xét \(x< 0,5\)

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=1-x+1-2x+2-x=4-4x\)

Do \(x< 0,5\Leftrightarrow4x< 2\Leftrightarrow-4x>-2\Leftrightarrow4-4x>-2+4\Leftrightarrow4-4x>2~~~~~~~~\left(1\right)\)

*) Xét \(0,5\le x\le1\).

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=1-x+2x-1+2-x=2~~~~~~~~\left(2\right)\)

*) Xét \(1< x< 2\)

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=x-1+2x-1+2-x=2x\)

Do \(1< x< 2\Leftrightarrow2< 2x< 4~~~~~~~\left(3\right)\)

*) Xét \(2\le x\)

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=x-1+2x-1+x-2=4x-4\)

Do \(2\le x\Rightarrow4x\ge8\Rightarrow4x-4\ge4~~~~~~~~~\left(4\right)\)

Từ (1);(2);(3):(4) \(\Rightarrow_{min}A=2\)khi \(0,5\le x\le1\)

b) Mình nghĩ đề nên là \(\left(2x-1\right)^2-6\left|2x-1\right|+5\)

c) \(C=\left(2x-1\right)^2-3\left|2x-1\right|+2\)

Đặt \(\left|2x-1\right|=y\)

Ta có: \(C=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2=y^2-3y+2\)

\(=\left(y^2-3y+2,25\right)-0,25=\left(y-1,5\right)^2-0,25\ge-0,25\)

Dấu "=" xảy ra khi \(y=1,5\)

\(\Rightarrow\left|2x-1\right|=1,5\Leftrightarrow\)\(\left[{}\begin{matrix}2x-1=1,5\\2x-1=-1,5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1,25\\x=-0,25\end{matrix}\right.\)

Vậy \(_{min}C=-0,25\) khi \(x=1,25\) hoặc \(x=-0,25\)

d)

Ta có: \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2++\dfrac{3}{4}>0\)

\(\Rightarrow D=x^2+x+1+\left|x^2+x-12\right|=x^2+x+1+\left|12-x^2-x\right|\ge x^2+x+1+12-x^2-x=13\)Dấu"=" xảy ra khi:

\(12-x^2-x\ge0\Rightarrow\left(x+4\right)\left(x-3\right)\ge0\)

Do \(x+4>x-3\Rightarrow\left\{{}\begin{matrix}x+4\ge0\\x-3\le0\end{matrix}\right.\)\(\Leftrightarrow3\ge x\ge-4\)

Vậy \(_{min}D=13\) khi \(3\ge x\ge-4\)

P/s: trước hết thế đã nhé