Bài 2: Đặt \(\left|x-1\right|=y\)
ta có: \(A=6\left|x-1\right|-\left(x-1\right)^2-2=6\left|x-1\right|-\left|x-1\right|^2-2=6y-y^2-2\)
\(=-\left(y^2-6y+9\right)+7=-\left(y-3\right)^2+7\le7\)
Dấu"=" xảy ra khi: \(y=3\)
Vậy \(_{max}A=7\) khi \(y=3\)
Bài 3:
a)
Ta có: \(a-b=1\Leftrightarrow a=b+1\)
\(\Rightarrow A=\left(b+1\right)^3-b^3-\left(b+1\right)b=b^3+3b^2+3b+1-b^3-b^2-b\)
\(=2b^2+2b+1=2\left(b^2+b+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(b+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu "=" xảy ta khi \(b=-\dfrac{1}{2}\Rightarrow a=\dfrac{1}{2}\)
Vậy \(_{min}A=\dfrac{1}{2}\) khi \(b=-\dfrac{1}{2};a=\dfrac{1}{2}\)
b)
Ta có: \(3a+5b=12\Leftrightarrow b=\dfrac{12-3a}{5}\Rightarrow B=\left(\dfrac{12-3a}{5}\right).a\)
\(\Leftrightarrow B=\dfrac{-3a^2+12a}{5}=\dfrac{-3\left(a^2-4a+4\right)+12}{5}=-\dfrac{3\left(a-2\right)^2}{5}+2,4\le2,4\)
Dấu"=" xảy ra khi: \(a=2\Rightarrow b=1,2\)
Vậy \(_{max}B=2,4\) khi \(a=2;b=1,2\)