Giải:
Vẽ tam giác ABC vuông tại A, kẻ \(AH\perp BC\)
Ta có: \(\widehat{C}+\widehat{A_2}=90^o\left(\widehat{H}=90^o\right)\)
\(\widehat{A_1}+\widehat{A_2}=90^o\)
\(\Rightarrow\widehat{C}=\widehat{A_1}\)
Tương tự, \(\widehat{B}=\widehat{A_2}\)
Xét \(\Delta AHC,\Delta BAC\) có:
\(\widehat{AHC}=\widehat{BAC}=90^o,\widehat{B}=\widehat{A_2}\left(cmt\right)\)
\(\Rightarrow\Delta HAC\)\(\sim\)\(\Delta HBA\left(g-g\right)\)
Tương tự, \(\Delta AHC\)\(\sim\)\(\Delta BAC\left(g-g\right)\) và
\(\Delta AHB\)\(\sim\)\(\Delta CAB\left(g-g\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{AC}{BC}=\dfrac{HC}{AC}\\\dfrac{AB}{BC}=\dfrac{HB}{AB}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AC^2=HC.BC\\AB^2=HB.BC\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=HC.BC+HB.BC\)
\(\Rightarrow AB^2+AC^2=\left(HC+HB\right)BC\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrowđpcm\)