HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Áp dụng bất đẳng thức \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) có: \(A=\left|x-2016\right|-\left|2017-x\right|\le\left|x-2016-2017-x\right|=4033\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2016\ge0\\x-2017\le0\end{matrix}\right.\Rightarrow2016\le x\le2017\)
Vậy \(MAX_A=4033\) khi \(2016\le x\le2017\)
Change the word in brackets to complete the sentence
-Nam's mother is _unhappy___because he always makes mistakes.(HAPPY)
-I love these people because they are very__friendly___.(FRIEND)
-She is not_different__from her sister.(DIFFER)
-Her new shool is_bigger__than her old school.(BIG)
Ta có: \(x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow A=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
Dấu " = " khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy \(MAX_A=\dfrac{4}{3}\) khi \(x=\dfrac{1}{4}\)
a, \(t\left(t+2a^2\right)+a^4=t^2+2a^2t+a^4=\left(a^2+t\right)^2\)
b, \(x^2+3x+2=x^2+2x+x+2=x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+1\right)\left(x+2\right)\)
c, \(x^4+5x^3+9x^2+7x+2\)
\(=x^4+x^3+4x^3+4x^2+5x^2+5x+2x+2\)
\(=x^3\left(x+1\right)+4x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x^3+4x^2+5x+2\right)\left(x+1\right)\)
\(=\left(x^3+x^2+3x^2+3x+2x+2\right)\left(x+1\right)\)
\(=\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]\left(x+1\right)\)
\(=\left(x^2+3x+2\right)\left(x+1\right)^2\)
\(=\left(x+2\right)\left(x+1\right)^3\)
Giải:
Hai người gặp nhau sau: \(t=\dfrac{s}{v_1+v_2}=2\left(h\right)\)
Chỗ gặp nhau cách A:
\(s_1=v_1.t=50\left(km\right)\)
Vậy...