HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\left|\left|2x-1\right|-\frac{1}{2}\right|=\frac{4}{5}\)
TH1 : \(\left|2x-1\right|-\frac{1}{2}=\frac{4}{5}\Rightarrow\left|2x-1\right|=\frac{13}{10}\)
TH2 : \(\left|2x-1\right|-\frac{1}{2}=-\frac{4}{5}\Rightarrow\left|2x-1\right|=\frac{-3}{10}\) (loại )
Ta có :
\(\left|2x-1\right|=\frac{13}{10}\)
=> TH1 : \(2x-1=\frac{13}{10}\Rightarrow2x=\frac{23}{10}\Rightarrow x=\frac{23}{20}\)
TH2 : \(2x-1=\frac{-13}{10}\Rightarrow2x=\frac{-3}{10}\Rightarrow x=\frac{-3}{20}\)
Vậy x = \(\frac{23}{20}\)
hoặc x = \(\frac{-3}{20}\)
nhắn tin y
ok hỏi đi t chỉ
về thầy cô :
Viên phấn nào trên tay Thầy dạy em học chữ Bụi phấn nào bay bay Vương tóc thầy trắng xóa Bao mùa thu đi qua Thầy xưa nay đã già Khai trí em thêm sáng Cho cây đời nở hoa Từng lời giảng yêu thương Bao lớp trẻ xa trường Gói hành trang thêm nặng Nghĩa tình thầy vấn vương Mai lớn khôn nên người Khi nào em quên được? Công ơn người đi trước Dìu dắt chúng em theo.
Mỗi cơ thể sống là một bộ máy hoạt động hoàn hảo. Các cơ quan phối hợp nhịp nhàng cùng nhau thực hiện bốn đặc trưng cơ bản của cơ thể sống:
Tất cả các đặc trưng cơ bản của cơ thể sống sẽ được trình bày một cách hệ thống trong chương trình Sinh học 11: Sinh học cơ thể.
Walking is good for health and fitness
Tử số = \(\frac{2006}{2}+...+\frac{2006}{2007}\)
= 2006.(\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\))
MS= \(\frac{2006}{1}+\frac{2005}{2}+...+\frac{1}{2006}\)
= 2006+\(\frac{2007-2}{2}+\frac{2007-3}{3}+...+\frac{2007-2006}{2006}\)
=200+.(\(\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}\)) - ( 1+1+1+...+1 )(2006c/s1)
= 2006 . (\(\frac{2007}{2}+...+\frac{2007}{2006}\))-2006
=\(\frac{2007}{2}+...+\frac{2007}{2006}\)
=2007.(\(\frac{1}{2}+...+\frac{1}{2006}\))
Khi đó :
C= .... bạn tự đáp số
và cuối cùng C = \(\frac{2006}{2007}\)
Dãy a được viết theo trình tự như sau :
16;2.7;3.8 ...
=> số số hạng thứ 50 của dãy là :
1;2;3;... là 50
=> số số hạng thứ 50 của dãy a là : 50.55=2750
b, Dãy b được viết theo trình tự như sau :
1.4;4.7;7.10;...
Gọi số hạng thứ 50 của dãy : 1;4;7;... là x
=> x=(50-1) .3+1 =148
=> số hạng thứ 50 của dãy b là : 148.151=22348
Đặt biểu thức trên là *
Với n=1 thì => * <=> 13=\(\frac{1^2\left(1+1\right)^2}{4}\left(đúng\right)\)
Giả sử * đúng vói n=k => * <=> 13+...+k3=\(\frac{k^2\left(k+1\right)^2}{4}\)
Cần c/m * cũng đúng với n=k+1
Thật vậy với n=k+1
=> * <=> 13 + ... + k3 + ( k + 1 )3=\(\frac{\left(k+1\right)^2.\left(k+2\right)^2}{4}\)
<=> \(\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k+1\right)^{2.}.\left(k+2\right)^2}{4}\Leftrightarrow\frac{k^2}{4}+k+1=\frac{\left(k+2\right)^2}{4}\)
<=> \(\frac{\left(k+2\right)^2}{4}=\frac{\left(k+2\right)^2}{4}\)
=> * đúng với n=k+1
Vậy * đúng với mọi số tự nhiên nϵN
Đặt biểu thức là (*)
Với n=1
=> (*)<=> 1=\(\frac{1.\left(1+1\right)}{2}\)
Vậy với n=1 ( đúng )
Giả sử (*) đúng với n=k
=> (*) <=> 1+2+3+...+k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh n=k+1
Thật vậy n=k+1 thì
(*) <=> 1+3+3+...+k+k+1 = \(\frac{k+1.\left(k+2\right)}{2}\)
<=> \(\frac{K\left(k+1\right)}{2}+K+1=\frac{\left(k+1\right).\left(k+2\right)}{2}\)
<=> \(\frac{k}{2}+1=\frac{k+2}{2}\)
<=>\(\frac{k}{2}+1=\frac{k}{2}+1\left(đúng\right)\)
Vậy (*) đúng với n=k+1
Vậy (*) đúng với mọi số tự nhiên n ϵ N ( Khác 0 )