HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(I=\frac{a^{\frac{4}{3}}-8a^{\frac{2}{3}}b}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}\left(1-2\sqrt[3]{\frac{b}{a}}\right)^{-1}-a^{\frac{2}{3}}=\frac{a^{\frac{1}{3}}\left(a-8b\right)}{a^{\frac{2}{3}}+2a^{\frac{1}{3}}.b^{\frac{1}{3}}+4b^{\frac{2}{3}}}\left(\frac{\sqrt[3]{a}-2\sqrt[3]{b}}{\sqrt[3]{a}}\right)^{-1}-a^{\frac{2}{3}}\)
\(=\frac{\sqrt[3]{a}\left[\left(\sqrt[3]{a}\right)^3-\left(2\sqrt[3]{b}\right)^3\right]}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}.\frac{\sqrt[3]{a}}{\sqrt[3]{a}-2\sqrt[3]{b}}-a^{\frac{2}{3}}\)
\(=\frac{\left(\sqrt[3]{a}\right)^2\left(\sqrt[3]{a}-2\sqrt[3]{b}\right)\left[\left(\sqrt[3]{a}\right)^2+2\sqrt[3]{ab}+\left(2\sqrt[3]{b}\right)^2\right]}{\left(\sqrt[3]{a}-a\sqrt[3]{b}\right)\left[\left(\sqrt[3]{a}\right)^2+2\sqrt[3]{ab}+\left(2\sqrt[3]{b}\right)^2\right]}-a^{\frac{2}{3}}=a^{\frac{2}{3}}-a^{\frac{2}{3}}=0\)
Từ bất phương trình ban đầu \(\Leftrightarrow25.5^x-5.5^x>9.3^x-3.3^x\)
\(\Leftrightarrow20.5^x>6.3^x\)
\(\Leftrightarrow\left(\frac{5}{3}\right)^x>\frac{3}{10}\)
\(\Leftrightarrow x>\log_{\frac{5}{3}}\frac{3}{10}\)
\(\Leftrightarrow2^{x^2-x}.2^{2x}-4.2^{^{x^2-x}}-2^{2x}+4=0\)
\(\Leftrightarrow2^{x^2-x}\left(2^{2x}-4\right)-\left(2^{2x}-4\right)=0\)
\(\Leftrightarrow\left(2^{2x}-4\right)\left(2^{x^2-x}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2^{2x}=4\\2^{x^2-x}=1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=0\end{array}\right.\)
\(\Leftrightarrow7.2^x=13.3^x\Leftrightarrow\left(\frac{3}{2}\right)^x=\frac{7}{13}\Leftrightarrow x=\log_{\frac{3}{2}}\frac{7}{13}\)
Đặt điện áp u = U 0 cos 100 πt V ( t tính bằng s) vào hai đầu tụ điện có điện dung C = 10 - 3 π F . Dung kháng của tụ điện là:
A. 15 Ω .
B. 10 Ω .
C. 50 Ω .
D. 0,1 Ω .
Khi gia tốc của một chất điểm dao động điều hòa cực đại thì:
A. Li độ của nó đạt cực tiểu.
B. Thế năng của nó bằng không.
C. Li độ của nó bằng không .
D. Vận tốc của nó đạt cực đại.
\(L=\lim\limits_{x\rightarrow0}\frac{2-\sqrt{4-x^2}}{\sqrt{x^2+9}-3}=\lim\limits_{x\rightarrow0}\frac{\left[4-\left(4-x^2\right)\right]\left(\sqrt{x^2+9}+3\right)}{\left[\left(x^2+9\right)-9\right]\left(2+\sqrt{4-x^2}\right)}=\frac{3}{2}\)
Tập xác định : \(D=R\backslash\left\{-m\right\}\)
Ta có : \(y=x+\frac{1}{x+m}\Rightarrow y'=1-\frac{1}{\left(x+m\right)^2}\Rightarrow y"=\frac{2}{\left(x+m\right)^3}\)
Hàm số đạt cực tiểu tại \(x=1\Leftrightarrow\begin{cases}y'\left(1\right)=0\\y"\left(1\right)>0\end{cases}\)
\(\Leftrightarrow\begin{cases}1-\frac{1}{\left(x+m\right)^2}=0\\\frac{2}{\left(x+m\right)^3}>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m=0\\m>-1\end{cases}\) \(\Leftrightarrow m=0\)
Vậy m = 0 thì hàm số đạt cực tiểu tạo x = 1