\(L=\lim\limits_{x\rightarrow0}\frac{2-\sqrt{4-x^2}}{\sqrt{x^2+9}-3}=\lim\limits_{x\rightarrow0}\frac{\left[4-\left(4-x^2\right)\right]\left(\sqrt{x^2+9}+3\right)}{\left[\left(x^2+9\right)-9\right]\left(2+\sqrt{4-x^2}\right)}=\frac{3}{2}\)
\(L=\lim\limits_{x\rightarrow0}\frac{2-\sqrt{4-x^2}}{\sqrt{x^2+9}-3}=\lim\limits_{x\rightarrow0}\frac{\left[4-\left(4-x^2\right)\right]\left(\sqrt{x^2+9}+3\right)}{\left[\left(x^2+9\right)-9\right]\left(2+\sqrt{4-x^2}\right)}=\frac{3}{2}\)
Tìm giới hạn sau
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+x^2}-1}{x^2}\)
Tìm giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
Tính các giới hạn
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+x+1}-\sqrt[3]{x^3+1}}{x}\)
Tìm giới hạn: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}\sqrt[3]{1+3x}\sqrt[4]{1+4x}-1}{x}\)
Tính giới hạn
\(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\)
đ10b1c6
tìm giới hạn
\(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}+\sqrt{x+9}-5}{x}\)
Tìm giới hạn: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}\sqrt[3]{1+3x}-1}{x}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-\sqrt[3]{x-1}}{x}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{x-3}+\sqrt[4]{2x-3}}{x-2}\)