HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Bất phương trình : \(\Leftrightarrow2^{3x^2}< 2^3.3^{1-x}\Leftrightarrow2^{3x^2-3}< 3^{1-x}\)
\(\Leftrightarrow\left(3x^2-3\right)\log_32< 1-x\)
\(\Leftrightarrow\left(x-1\right)\left[3\left(x+1\right)\log_32+1\right]< 0\)
\(\Leftrightarrow-\frac{3\log_32+1}{3\log_32}< x< 1\)
Vậy tập nghiệm của bất phương trình là :
\(S=\left(-\frac{3\log_32+1}{3\log_32};1\right)\)
Điều kiện xác định :\(x\ne-1\)
Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)
\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)
\(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)
Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))
Ta xét 3 trường hợp :
* Nếu \(x>4\) thì \(x-3>1\Rightarrow\left(x-3\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.
* Nếu \(x< 3\) thì \(x-4< -1\Rightarrow\left(x-4\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.
* Nếu \(3< x< 4\) thì \(x-3>1\Rightarrow\left|x-3\right|,\left|x-4\right|\le1\Rightarrow\left(x-3\right)^{2010}< \left(x-3\right),\left(x-4\right)^{2012}\le\left(4-x\right)\)
Do đó \(\left(x-3\right)^{2010}+\left(x-4\right)^{2012}< \left(x-3\right)+\left(4-x\right)=1\) cũng mâu thuẫn
Mặt khác, với \(x=3;x=4\) thì đẳng thức đúng. Vậy ta có điều phải chứng minh
Do \(\sqrt{\pi}>1\) nên theo tính chất về lũy thừa số thực, ta có :
* Vì \(\cos x\ge1,x\in R\) nên \(A=\left(\sqrt{\pi}\right)^{\cos x}\ge\left(\sqrt{\pi}\right)^{-1}=\frac{1}{\sqrt{\pi}}\)
Giá trị nhỏ nhất của A là \(\frac{1}{\sqrt{\pi}}\) đạt được khi \(\cos x=-1\Leftrightarrow x=\pi+2k\pi,k\in Z\)
* Vì \(\cos x\le1,x\in R\) nên \(A=\left(\sqrt{\pi}\right)^{\cos x}\le\left(\sqrt{\pi}\right)^1=\sqrt{\pi}\)
Giá trị nhỏ nhất của A là \(\sqrt{\pi}\) đạt được khi \(\cos x=1\Leftrightarrow x=2k\pi,k\in Z\)
Do \(a+b=1\Rightarrow b=1-a\)
Suy ra : \(f\left(b\right)=f\left(1-a\right)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=1\)