HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tiết Độ Sứ ban đầu là chức võ quan cai quản quân sự một phiên trấn có nguồn gốc vào thời nhà Đường, Trung Quốc khoảng năm 710-711 nhằm đối phó với các mối đe dọa từ bên ngoài. Dần dần theo dòng thời gian, Tiết độ sự kiêm quản hành chính, tài chính địa phương và cuối cùng trở thành lãnh chúa cha truyền con nối.
a)Xét t/giác ABC cân tại A có
AH là đg pg của t/giác ABC
suy ra AH đồng thời là đường cao , đường trung tuyến của t/giác ABC
do đó AH vuông góc với BC
Ta có BH=\(\dfrac{1}{2}\)BC (vì H là trg điểm của BC do AH là đg trug tuyến)
BH=\(\dfrac{1}{2}\)6
BH=3 cm
Vì t/giác AHB vuông ở H
suy ra \(AH^2\)+\(HB^2\)=\(AB^2\)( ĐL PY TA GO)
\(AH^2\)+\(3^2\)=\(5^2\)
\(AH^2\)+9=25
\(AH^2\)=16
AH=4 cm
b)Xét t/giác ABC có BD vuông góc với AC tại D
AH vuông góc với BC tại H
Mà BD cắt AH ở K
Do đo K là trọng tâm của t/giác ABC
suy ra CK vuông góc với AB
Gọi D là hình chiếu của điểm B trên cạnh AC chứ
ta có A=\(\dfrac{6}{8}\)+\(\dfrac{6}{56}\)+\(\dfrac{6}{140}\)+...+\(\dfrac{6}{1100}\)+\(\dfrac{6}{1400}\)
=\(\dfrac{3}{4}\)+\(\dfrac{3}{28}\)+\(\dfrac{3}{70}\)+...+\(\dfrac{3}{550}\)+\(\dfrac{3}{700}\)
=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{22.25}\)+\(\dfrac{3}{25.28}\)
=1-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{10}\)+...+\(\dfrac{1}{22}\)-\(\dfrac{1}{25}\)+\(\dfrac{1}{25}\)-\(\dfrac{1}{28}\)
=1-\(\dfrac{1}{28}\)
=\(\dfrac{27}{28}\)
Vậy A=\(\dfrac{27}{28}\)
-đường xích đạo nằm ở vĩ độ 0
-Chí tuyến Bắc nằm ở vĩ độ 23°27 Bắc
-Chí tuyến Nam nằm ở vĩ độ 23°27 Nam
- Vòng cực Bắc nằm ở vĩ độ 66°33 Bắc
Vòng cực Nam nằm ở vĩ độ 66°33 Nam
viết thiếu đầu bài , viết sai đầu bài nx
a) Xét t/giác ABD và t/giác HBD có
BAD=BHD (=90 ĐỘ)
ABD=HBD(BD là tia pg của ABC)
BD là cạnh chung
Do đó t/giác ABD= t/giác HBD (chgn)
b) Vì t/giác ABC vuông tại A
suy ra \(AB^2\)+\(AC^2\)=\(BC^2\)(ĐL PY TA GO)
\(15^2\)+\(20^2\)=\(BC^2\)
225+400=\(BC^2\)
\(BC^2\)=625
BC=25 cm
a) Xét t/giác BAH và t./giác CAH có
AHB=AHC (=90 độ)
AH là cạnh chung
AB=AC( t/giác ABC cân tại A)
Do đó t/giác BAH= t/giácCAH(chcgv)
suy ra HB=HC(2 cạnh t/ứ)
BAH=CAH(2 góc tương ứng)
suy ra AH là tia pg của BAC
b)Xét t/giác DBE và t/giác HBA có
AB=AE(gt)
DB=DH(gt)
ABH=DBE( 2 góc đối đỉnh)
Do đó t/giác DBE= t/giác HBA(cgc)
suy ra BAH=BED( 2 góc t/ứ)
Mà BAH và BED là 2 góc ở vị trí SLT của 2 đường thẳng AH và DE
suy ra AH//DE
c) Ta có DH=DB+BH
suy ra DH=2BH ( DB=BH)
Do đó DH>BH
Mà DH đối diện với góc DAH
BH đối diện với hóc BAH
suy ra DAH>BAH
( sr mình ko bt lm câu d )
um đúng v
11 C
12 A
13 D
14 C
15 B
1 C
2 C
3 D
4 A
5 D
6 D
7
8 A
9 C
10 D
( Câu 7 đáp án sai hay sao á bạn )