HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(3.38.8+4.37.6+2.25.12\)
\(=24.38+25.37+24.25\)
\(=24\left(38+37+25\right)\)
\(=24.100=2400\)
Bài 14:
\(\widehat{BAC}=180-70-30=80^o\)(tổng 3 góc trong tam giác)
=> \(\widehat{BAC}=\widehat{ACD}\)
mà 2 góc có vị trí so le trong
=> AB//CD
Bài 15:
Kẻ AK//CD
=> \(\widehat{CAK}=180-140=40^o\)(góc trong cùng phía)
=> \(\widehat{BAC}=180^o-\widehat{CAK}=180^o-40^o=140^o\)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\)
\(A=1+5+5^2+...+5^{2022}\)
\(5A=5+5^2+5^3+...+5^{2023}\)
\(5A-A=5+5^2+5^3+...+5^{2023}-\left(1+5+5^2+...+5^{2022}\right)\)
\(4A=5^{2023}-1\)
\(A=\dfrac{5^{2023}-1}{4}\)
\(D=2-4+6-8+...+94-96+98\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+98\)
Số hạng của D là: \(\dfrac{96-2}{2}+1=48\left(số\right)\)
\(D=-2.\dfrac{48}{2}+98=50\)
Ta có:
\(A-B=C-D\)
\(\Rightarrow A+D=B+C\)
Mặt khác:
\(A+B+C+D=360^o\)
\(\Rightarrow2\left(A+D\right)=360^o\left(A+D=B+C\right)\)
\(\Rightarrow A+D=180^o\)
Mà 2 góc có vị trí trong cùng phía
=> ABCD là hình thang
\(x^2-9y^2=2022\)
\(\left(x-3y\right)\left(x+3y\right)=2022\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3y=2\\x+3y=1011\end{matrix}\right.\\\left\{{}\begin{matrix}x-3y=-2\\x+3y=-1011\end{matrix}\right.\\\left\{{}\begin{matrix}x-3y=1\\x+3y=2022\end{matrix}\right.\\\left\{{}\begin{matrix}x-3y=-1\\x+3y=-2022\end{matrix}\right.\end{matrix}\right.\)
\(\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3y=1011\\x+3y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-3y=-1011\\x+3y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-3y=-2022\\x+3y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-3y=2022\\x+3y=1\end{matrix}\right.\end{matrix}\right.\)
Đến đây e giải 8 hệ ra là được nha
\(\left(15-6x\right).3^5=3^6\)
\(15-6x=\dfrac{3^6}{3^5}=3\)
\(6x=15-3=12\)
\(x=2\)
a) \(A=2\left(1+2+2^2+...+2^{2022}+2^{2023}\right)⋮2\left(đpcm\right)\)
b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2023}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2023}.3\)
\(=3\left(2+2^3+...+2^{2023}\right)⋮3\left(đpcm\right)\)
Đặt \(A=2+2^2+2^3+...+2^{60}+2^{61}\)
\(2A=2^2+2^3+2^4+...+2^{61}+2^{62}\)
\(2A-A=2^2+2^3+2^4+...+2^{61}+2^{62}-\left(2+2^2+2^3+...+2^{60}+2^{61}\right)\)
\(A=2^{62}-2\)
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)
\(=15+15.2^4+...+15.2^{92}\)
\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)