\(a,\dfrac{3}{2}.\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(=>\dfrac{6}{5}-x=\dfrac{2}{3}\)
\(=>x=\dfrac{8}{15}\)
\(b,x.3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\)
\(=>x.\dfrac{10}{3}=\dfrac{10}{3}:\dfrac{17}{4}\)
\(=>x=\dfrac{4}{17}\)
\(c,5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(=>\dfrac{17}{3}:x=\dfrac{7}{6}\)
\(=>x=\dfrac{34}{7}\)
`B19:`
\(a,A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=>A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=>A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(b,B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=>B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=>B=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(c,C=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).....\left(1-\dfrac{1}{2023}\right)\left(1-\dfrac{1}{2024}\right)\)
\(=>C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{2022}{2023}.\dfrac{2023}{2024}\)
\(=>C=\dfrac{1}{2024}\)
\(d,D=5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}.4\dfrac{1}{2}-2.2\dfrac{1}{3}\right):\dfrac{7}{4}\)
\(=>D=\dfrac{59}{15}-\left(\dfrac{21}{2}-\dfrac{14}{3}\right):\dfrac{7}{4}\)
\(=>D=\dfrac{59}{15}-\dfrac{35}{6}:\dfrac{7}{4}\)
\(=>D=\dfrac{59}{15}-\dfrac{10}{3}=\dfrac{3}{5}\)