Câu 3
Gọi x số chi tiết máy của tổ 1 sản xuất trong tháng giêng \(\left(x\in N\right)\)
y số chi tiết máy của tổ 2 sản xuất trong tháng giêng \(\left(y\in N\right)\)
Ta có \(x+y=900\) (1) (vì tháng giêng 2 tổ sản xuất được 900 chi tiết).
Do cải tiến kĩ thuật nên tháng 2 tổ 1 sản xuất được: \(x+15\%x\)
Tổ 2 sản xuất được \(y+10\%y\)
Cả 2 tổ sản xuất được: \(1,15x+1,10y=1010\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\left\{{}\begin{matrix}x+y=900\\1,15x+1,1y=1010\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1,1x+1,1y=990\\1,15x+1,1y=1010\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0,05x=20\\x+y=900\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=400\\400+y=900\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=500\end{matrix}\right.\)
Vậy trong tháng giêng tổ 1 sản xuất được 400 chi tiết máy
trong tháng giêng tổ 2 sản xuất được 500 chi tiết máy
Câu 4
a, Ta có \(IPC=90\) độ(vì góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\)CPK=90 độ
Xét tứ giác CPKB có: K+B=90+90=180 độ
CPKB là tứ giác nội tiếp đường tròn (đpcm)
b, Xét \(\Delta\)AIC và \(\Delta\)BCK có A=B=90 độ
ACI=BKC (2 góc có cạnh tương ứng vuông góc)
c, Ta có: PAC=PIC (vì 2 góc nội tiếp cùng chắn cung PC)
PBC=PKC (vì 2 góc nội tiếp cùng chắn cung PC)
Suy ra PAC+PBC=PIC+PKC=90 độ (vì \(\Delta\)ICK vuông tại C)
\(\Rightarrow\)APB=90 độ
-Chúc bạn học tốt-