HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
rút gọn biểu thức : \(\dfrac{5-2\sqrt{5}}{\sqrt{5}}\) - ( \(5\sqrt{5}-3\) ) + \(\sqrt{80}\)
rút gọn biểu thức : A = \(\dfrac{\left(1\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\)
rút gọn \(\dfrac{1}{\sqrt{2}+1}\) - \(\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
cho các số dương x,y,z chứng minh rằng:
\(\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}\)+\(\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}\)+\(\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}\)≥\(\dfrac{3}{4}\)
cho các số thực dương x,y,z thoả mãn \(\sqrt{x}\) + \(\sqrt{y}\) + \(\sqrt{z}\) = 1
chứng minh rằng : \(\sqrt{\dfrac{xy}{x+y+2z}}\) + \(\sqrt{\dfrac{yz}{y+z+2x}}\) + \(\sqrt{\dfrac{zx}{z+x+2y}}\) ≤ \(\dfrac{1}{2}\)
cho ba số thực a,b,c dương . chứng minh rằng :
\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\)+ \(\sqrt{\dfrac{b^3}{b^3+\left(c+a\right)^3}}\)+\(\sqrt{\dfrac{c^3}{c^3+\left(b+a\right)^3}}\)≥1