HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a/ CM:\(\sqrt{x^4+1}\)≥\(\dfrac{1}{\sqrt{17}}\left(x^2+4\right)\) với mọi số thực x.Dấu đẳng thức xảy ra khi nào?
b/ Cho a,b là các số thực thỏa mãn \(a^2+b^2\) ≥\(\dfrac{1}{2}\) .Tính giá trị nhỏ nhất của biểu thức D=\(\sqrt{a^2+1}+\sqrt{b^2+1}\)
Cho nϵN* và
\(P=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-...+\dfrac{1}{\sqrt{2n}-\sqrt{2n+1}}\)
Hỏi P có là số hữu tỉ hay không? Vì sao?
Tìm GTNN của A=\(\dfrac{-3}{\sqrt{x}+3}\)
Chứng minh rằng nếu có 3 số a , a+k , a+2k đều là số nguyên tố lớn hơn 3 thì k chia hết cho 6
Giải phương trình:
\(\sqrt{3x+1}+2\sqrt{x+3}=3\sqrt{5x-1}\)
Tìm x để \(\dfrac{2x}{2\sqrt{x}-1}-\dfrac{3}{2}\)≤0
Với x>4, x≠9, tìm GTLN của \(\dfrac{3x+3}{2-\sqrt{x}}\)
Cho x,y,z>0 và khác nhau đôi một. Chứng minh rằng giá trị của biểu thức P không phụ thuộc vào giá trị của các biến:
P=\(\dfrac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\dfrac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)