27) \(\sqrt{5+\sqrt{21}}=\sqrt{\dfrac{10+2\sqrt{21}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt[]{3}.\sqrt{7}+\left(\sqrt{7}\right)^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{7}\right)^2}{2}}=\dfrac{\sqrt{3}+\sqrt{7}}{\sqrt{2}}\)
28) \(\sqrt{6-\sqrt{35}}=\sqrt{\dfrac{12-2\sqrt{35}}{2}}=\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{5}.\sqrt{7}+\left(\sqrt{5}\right)^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}-\sqrt{5}\right)^2}{2}}=\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{2}}\)
29) \(\sqrt{7+\sqrt{40}}=\sqrt{\dfrac{14+2\sqrt{40}}{2}}=\sqrt{\dfrac{\left(\sqrt{4}\right)^2+2\sqrt{4}.\sqrt{10}+\left(\sqrt{10}\right)^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{4}+\sqrt{10}\right)^2}{2}}=\dfrac{\sqrt{4}+\sqrt{10}}{2}\)
30) \(\sqrt{8+\sqrt{15}}=\sqrt{\dfrac{16+2\sqrt{15}}{2}}=\sqrt{\dfrac{\left(\sqrt{15}\right)^2+2\sqrt{15}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{15}+1\right)^2}{2}}=\dfrac{\sqrt{15}+1}{\sqrt{2}}\)
31) \(\sqrt{9-\sqrt{77}}=\sqrt{\dfrac{18-2\sqrt{77}}{2}}=\sqrt{\dfrac{\left(\sqrt{11}\right)^2-2\sqrt{11}.\sqrt{7}+\left(\sqrt{7}\right)^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{11}-\sqrt{7}\right)^2}{2}}=\dfrac{\sqrt{11}-\sqrt{7}}{\sqrt{2}}\)
32) \(\sqrt{10+\sqrt{99}}=\sqrt{\dfrac{20+2\sqrt{99}}{2}}=\sqrt{\dfrac{\left(\sqrt{9}\right)^2+2\sqrt{9}.\sqrt{11}+\left(\sqrt{11}\right)^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{9}+\sqrt{11}\right)^2}{2}}=\dfrac{\sqrt{9}+\sqrt{11}}{\sqrt{2}}\)