Cho tam giác ABC vuông tại A. trên cạnh BC lấy điểm D sao cho BD = BA. Tia phân giác góc B cắt AC ở E
a. C/m: Tam giác BEA = tam giác BED.
b. Qua C vẽ đường thẳng vuông góc với BE tại H. CH cắt AB tại F. C/m: BF = BC.
c. C/m: tam giác BAC = tam giác BDF và c/m: D, E, F thẳng hàng
Cho tam giác ABC có AB = AC. M là trung điểm của BC.
a. Chứng minh: tam giác ABM = tam giác ACM, AMB = 90 độ
b. Qua C vẽ đường thẳng d//AB, đường thẳng d cắt AM tại D. Chứng minh: tam giác ABM = tam giác DCM, CB là tia phân giác của góc ACD.
c. Trên tia đối của tia CD lấy điểm E sao cho Cx là tia phân giác của góc ACE. Chứng minh: Cx//Ad.
(mng giải theo lý thuyết từ "bài 14: trường hợp bằng nhau thứ 2 và thứ 3 của tam giác" đổ xuống giúp em với ạ, em cảm ơn nhiều)
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
(mng giải giúp em tới bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác ạ, cảm ơn mng nhiều)
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
Đề 14 bài 5. Cho tam giác BCD nhọn có BC = BD, K là trung điểm của CD. Từ K kẻ KE vuông góc với BC tại E, KF vuông góc với BD tại F.
a. Chứng minh: tam giác BCK = tam giác BDK.
b. Chứng minh: tam giác BKE = tam giác BKF.
c. Gọi M là giao điểm của đường thẳng BC và đường thẳng KF, N là giao điểm của đường thẳng BD và đường thẳng KE. Chứng minh: ME = NF, MF = NE.
d. Chứng minh: EF // MN.
Cho tam giác ABC biết AB < AC. AE là tia phân giác của góc BAC. Trên cạnh AC lấy điểm M sao cho AM = AB. AE cắt BM tại I. Trên tia đối của tia AM lấy điểm N sao cho EN = EC. Chứng minh:
a. Tam giác ABE = tam giác AME. (đã chứng minh)
b. IB = IM. (đã chứng minh)
c. Tam giác ENB = tam giác ECM. (đã chứng minh)
d. A, B, N thẳng hàng.