HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a)
Điều kiện để $1-2x > 0$ (đối số dương) là:
$1 > 2x$
$x < \frac{1}{2}$
Vậy, để biểu thức $log_3(1-2x)$ có nghĩa, giá trị của $x$ phải nhỏ hơn $\frac{1}{2}$.
b)
$\left(2^{\alpha }+2^{-\alpha }\right)^2 = \left(\sqrt{4}\right)^{\alpha }+\left(\sqrt{4}\right)^{-\alpha } = 4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}}$
$4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}} = 4^{\frac{\log_4{\frac{1}{5}}}{2}}+4^{-\frac{\log_4{\frac{1}{5}}}{2}} = \left(\frac{1}{5}\right)^{\frac{1}{2}}+\left(\frac{1}{5}\right)^{-\frac{1}{2}} = \sqrt{\frac{1}{5}}+\frac{1}{\sqrt{5}} = \frac{2}{\sqrt{5}}$
$16^{\alpha }+16^{-\alpha } = (4^2)^{\alpha }+(4^2)^{-\alpha } = 4^{2\alpha }+4^{-2\alpha }$
$4^{2\alpha }+4^{-2\alpha } = 4^{2\log_4{\frac{1}{5}}}+4^{-2\log_4{\frac{1}{5}}} = \left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^{-2} = \frac{1}{25}+25 = \frac{26}{25}$
$P(2) = 500 \left(\frac{1}{2}\right)^{\frac{2}{3}}$
$P(2.25) = 500 \left(\frac{1}{2}\right)^{\frac{2.25}{3}}$
$P(1) = 500 \left(\frac{1}{2}\right)^{\frac{1}{3}}$
Phần trăm giá trị còn lại so với ban đầu sau 1 năm là: `\frac{P(1)}{500} \times 100%=79%`
$\left(x^{\sqrt{2}}y\right)^{\sqrt{2}} = x^{\sqrt{2} \cdot \sqrt{2}}y^{\sqrt{2}} = x^2y^{\sqrt{2}}$
$x^2y^{\sqrt{2}} \cdot 9y^{-\sqrt{2}} = 9x^2y^{\sqrt{2}}y^{-\sqrt{2}} = 9x^2$
a) Khi a = 1dm:
Diện tích một mặt `(S) = a^2 = 1^2 = 1dm^2`
Thể tích `(V) = a^3 = 1^3 = 1dm^3`
Khi a = 3dm:
Diện tích một mặt `(S) = a^2 = 3^2 = 9dm^2`
Thể tích `(V) = a^3 = 3^3 = 27dm^3`
b) Để S = `25dm^2`, ta cần tìm giá trị của a. Ta có:`a^2 = 25`=> `a = √25 = 5dm`
c) Để V = `64dm^3`, ta cần tìm giá trị của a. Ta có:`a^3 = 64`=> `a = ∛64 = 4dm`