HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1. A
2. D
\(97-\left(64-x\right)=44\)
\(64-x=97-44\)
\(64-x=53\)
\(x=64-53\)
\(x=11\)
I haven't met my grandma for years.
\(\dfrac{3}{4}\times\dfrac{4}{5}=\dfrac{3}{5}\)
Biểu thức luôn xác định là: \(\sqrt{x^2+x+1}\)
Giải thích: Vì biểu thức trong căn luôn > 0 với mọi số thực x.
\(7^{4x}+2=49^x+1\)
\(\Leftrightarrow4x+2=2\left(x+1\right)\)
\(\Leftrightarrow4x+2=2x+2\)
\(\Leftrightarrow4x-2x=2-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
\(\dfrac{a}{4}-\dfrac{2}{b}=\dfrac{5}{4}\)
\(\dfrac{ab-8}{4b}=\dfrac{5}{4}\)
\(\Rightarrow20b=4ab-32\)
\(4ab-20b=32\)
\(b\left(4a-20\right)=32\)
\(b=\dfrac{32}{4a-20}\)
\(b=\dfrac{4\cdot8}{4\left(a-5\right)}\)
\(b=\dfrac{8}{a-5}\)
a) Nhôm cacbua
b) Ancol benzylic
c) Natri etoxit
d) N,N-Đietyletanamin
e) But-2-in
g) Bạc axetylua
h) Propinylsilver
i) (1,2-Đibrometyl)benzen
ĐK: \(x\ge0\)
Lấy P - 1
\(\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1\)
\(=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}\)
\(=\dfrac{-\sqrt{x}-3}{2\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}+3\right)}{2\sqrt{x}+1}\)
Ta thấy \(\left\{{}\begin{matrix}\sqrt{x}+3>0\\2\sqrt{x}+1>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\left(\sqrt{x}+3\right)< 0\\2\sqrt{x}+1>0\end{matrix}\right.\Rightarrow P-1< 0\)
Vậy \(P< 1\).
a) Khi x = 9 TMĐK thì: \(A=\dfrac{\sqrt{9}-2}{\sqrt{9}-2}=\dfrac{3-2}{3-1}=\dfrac{1}{2}\)
Vậy \(x=9\) thì \(A=\dfrac{1}{2}\).
b) Với \(x\ge0 ; x\ne 1\) thì:
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{5\sqrt{x}+3}{1-x}+\dfrac{4}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{5\sqrt{x}+3}{x-1}+\dfrac{4}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-5\sqrt{x}-3+4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}-5\sqrt{x}-3+4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) (đpcm)