HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Thiếu điều kiện.
a) \(\sqrt{x}=2\Rightarrow x=4\)
b) \(\sqrt{x-3}=5\) \(\left(x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=5^2\)
\(\Leftrightarrow x-3=25\)
\(\Leftrightarrow x=28\)
c) \(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{2}{3}\) \(\left(x>0\right)\)
\(\Leftrightarrow3\sqrt{x}+6=2\sqrt{x}+10\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
d) \(x-2\sqrt{x}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow x=1\)
\(\left(2x-1\right)^5=x^5\)
\(2x-1=x\)
\(2x-x=1\)
\(x=1\)
_________________________
\(2x^2+2=20\)
\(2x^2=20-2\)
\(2x^2=18\)
\(x^2=\dfrac{18}{2}\)
\(x^2=9\)
\(x=\pm3\)
Ta có: \(n⋮4\Rightarrow n=4k\) \((k\ge0 ; k\in \mathbb N)\)
\(n< 2017\Rightarrow4k< 2017\Rightarrow k=504,25\)
\(\xrightarrow[]{k\ge0}k=0;1;2;...504\)
KL: tập hợp có 505 phần tử.
\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{1}{y-3}=5\\3\sqrt{x}=5+\dfrac{1}{y-3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{1}{y-3}=5\\3\sqrt{x}-\dfrac{1}{y-3}=5\end{matrix}\right.\)
ĐK: \(x\ge0;y\ge3\).
Đặt \(\sqrt{x}=a;\dfrac{1}{y-3}=b\)
\(\Rightarrow\left\{{}\begin{matrix}2a+b=5\\3a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Trả ẩn: \(\left\{{}\begin{matrix}\sqrt{x}=2\\\dfrac{1}{y-3}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy hệ pt có nghiệm: \(\left(x;y\right)=\left(4;4\right)\).
B. (any dùng trong câu pđ)
Check lại đi, bạn chưa rút gọn hết.
\(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2}-\dfrac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}\right)^2-\sqrt{3}^2}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)
\(=\dfrac{-2\sqrt{3}}{2}=-\sqrt{3}\)
\(\left(4x+1\right)\left(2x-5\right)=\left(2x-5\right)\left(2x+3\right)\)
\(\Leftrightarrow8x^2-20x+2x-5=4x^2+6x-10x-15\)
\(\Leftrightarrow8x^2-4x^2-20x+2x-6x+10x=-15+5\)
\(\Leftrightarrow4x^2-14x=-10\)
\(\Leftrightarrow4x^2-14x+10=0\)
\(\left(2x-5\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)
\(x^2-2+x+4=-0\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Rightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.