\(a,A=x\left(zy-x\right)-2y\left(z-2y\right)\)
Thay \(x=2\), \(y=\dfrac{1}{2}\) và \(z=-1\) vào A, ta được:
\(A=2\left(-\dfrac{1}{2}-2\right)-2.\dfrac{1}{2}\left(-1-2.\dfrac{1}{2}\right)\)
\(=2.\dfrac{-5}{2}-\left(-2\right)\)
\(=-5+2=-3\)
\(c,C=x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-5\right)\)
Thay \(x=\dfrac{33}{5};y=\dfrac{12}{5}\) vào C, ta được:
\(C=\left(\dfrac{33}{5}+\dfrac{12}{5}\right)\left(\dfrac{33}{5}-5\right)\)
\(=\dfrac{45}{5}.\dfrac{8}{5}\)
\(=\dfrac{9.8}{5}=\dfrac{72}{5}\)
\(d,D=x^2+xy+x\)
\(=x\left(x+y+1\right)\)
Thay \(x=51;y=-49\) vào D, ta được:
\(D=51.\left(51-49+1\right)\)
\(=51.\left(2+1\right)\)
\(=51.3=153\)