HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cíu cíu
zô zô cíu nèo
Cho nửa đường tròn tâm O đường kính AB=2R . Kẻ hai tiếp tuyến Ax và By (Ax và By nằm cùng phía với nửa đường tròn). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt Ax và By theo thứ tự ở C và D.
Chứng minh rằng
a) chứng minh COD = 90 độ
b) Chứng minh 4 điểm B,D,M,O nằm trên cùng một đường tròn, chỉ ra bán kính của đường tròn đó.
c) Chứng minh CD=AC+BD
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
e) chứng minh AB là tiếp tuyến của đường tròn đường kính CD
f) Gọi giao điểm AD và BC là N. Chứng minh MN//AC
cho hàm số y = ( 2 -m)x + m -1 (1) tìm m biết
a) đồ thị (1) đi qua gốc tọa độ
b) đồ thị của (1) tạo với trục Ox một góc ∂ = 30 độ
c) đồ thị của (1) tạo với trục Ox một góc ∂= 135 độ
d) đường thẳng (1) cắt trục tung tại điểm có tung đọ bằng 4
e) đường thẳng (1) cắt trục hoành tại điểm có hoành đọ bằng (-3)
cho hàm số y = -x và y = \(-\dfrac{1}{2}\)x
a) vẽ trên cùng một hệ trục tọa độ oxy đồ thị của 2 hàm số trên
b) qua điểm H (0;-5) vẽ đường thẳng d song song với trục Ox cắt đường thẳng y = -x và y = \(-\dfrac{1}{2}\)x lần lượt ở A và B tìm tọa độ của các điểm A, B
c) tính chu vi và dienj tích tam giác OAB
cíu tui cíu tui
Cho hai đường thẳng (d): y = (m − 2)x + 1& (d' ) : y = m^2x − 2x + m.
1) Tìm m biết (D) // (D’).
2) Với m tìm được ở câu 2 hãy
a) Vẽ đồ thị (D);
b) Tính góc tạo bởi đường thẳng (D) và trục Ox;
c) Tính chu vi và diện tích tam giác được tạo bởi đường thẳng (D), Ox, Oy;
d) Tính khoảng cách từ gốc tọa độ O đến đường thẳng (D).
4) chứng minh rằng đường thẳng (D) luôn đi qua một điểm cố định khi m thay đổi