5) \(x^6-7x^3-8=x^3\left(x^3-8\right)+x^3-8=\left(x^3+1\right)\left(x^3-8\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)\)
6) \(\left(x^2-x\right)^2+\left(x^2-x\right)-6\)
Đặt t = \(x^2-x\) ; ta có : \(t^2+t-6=t\left(t+3\right)-2\left(t+3\right)=\left(t-2\right)\left(t+3\right)\)
\(=\left(x^2-x-2\right)\left(x^2-x+3\right)=\left[x\left(x-2\right)+x-2\right]\left(x^2-x+3\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2-x+3\right)\)
7) \(x^2\left(x^2-7\right)^2-36=\left[x\left(x^2-7\right)-6\right]\left[x\left(x^2-7\right)+6\right]\)
\(=\left[x^3-7x-6\right]\left[x^3-7x+6\right]\)
\(=\left[x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\right]\left[x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\right]\)
\(=\left(x^2-x-6\right)\left(x+1\right)\left(x^2+x-6\right)\left(x-1\right)\)
\(=\left[x\left(x-3\right)+2\left(x-3\right)\right]\left(x+1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x-1\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)\left(x+3\right)\)