a) \(A=153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b) \(B=2020^2-2019^2+2018^2-2017^2+...+2^2-1^2\)
\(=\left(2020-2019\right)\left(2020+2019\right)+\left(2018-2017\right)\left(2018+2017\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=\left(2020+2019\right)+\left(2018+2017\right)+...+\left(2+1\right)\)
\(=2020+2019+2018+2017+...+2+1\) (có \(\left(2020-1\right)+1=2020\) (số hạng))
\(=\left(2020+1\right)+\left(2019+2\right)+...+\left(1011+1010\right)\) (có \(2020:2=1010\) (cặp))
\(=2021+2021+...+2021\) (có 1010 (số hạng))
\(=1010.2021\)
\(=2041210\)
c) \(C=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay \(x=101\) vào biểu thức C, ta được:
\(C=\left(101-1\right)^3=100^3=1000000\)
d) \(D=x^3+6x^2+12x+8=\left(x+2\right)^3\)
Thay \(x=8\) vào biểu thức D, ta được:
\(D=\left(8+2\right)^3=10^3=1000\)
e) Vì \(x=9\Rightarrow x+1=10,\) thay vào biểu thức E ta được:
\(E=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}+...-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}+...-x^3-x^2+x^2+x-x-1\)
\(=-1\)