Ta có:
\(A=\sqrt{11+\sqrt{96}}\)
\(=\sqrt{11+\sqrt{4.24}}\)
\(=\sqrt{11+\sqrt{2^2.24}}\)
\(=\sqrt{11+2\sqrt{24}}\)
\(=\sqrt{8+3+2\sqrt{8}.\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{8}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{8}+\sqrt{3}\right|\)
\(=\sqrt{8}+\sqrt{3}\) (vì \(\sqrt{8}+\sqrt{3}>0\))
\(=\sqrt{4.2}+\sqrt{3}\)
\(=\sqrt{2^2.2}+\sqrt{3}\)
\(=2\sqrt{2}+\sqrt{3}\)
\(=\sqrt{2}+\sqrt{2}+\sqrt{3}\)
\(B=\dfrac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
\(=\dfrac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}\)
\(=\dfrac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{3+2\sqrt{2}-3}\)
\(=\dfrac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{2\sqrt{2}}\)
\(=1+\sqrt{2}+\sqrt{3}\)
Vì \(2>1\Leftrightarrow\sqrt{2}>\sqrt{1}\Leftrightarrow\sqrt{2}>1\Leftrightarrow\sqrt{2}+\sqrt{2}+\sqrt{3}>1+\sqrt{2}+\sqrt{3}\Leftrightarrow A>B\)