HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm GTNN của biểu thức :
P = \(2x^2-xy+y^2-3x+\dfrac{1}{x}+2\sqrt{x-2}+2021\)
Cho pt : \(x^2-2\left(m-1\right)x-2m+1=0\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) phân biệt thỏa mãn \(2x_1-x_2=2\)
cho pt : \(x^2-2\left(m-1\right)x-2m+1\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) phân biệt thỏa mãn : \(2x_1-x_2=2\)
Cho pt : \(x^2-2\left(m-1\right)x-2m+1\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn P = \(x_1^2-4x_1x_2+x_2^2\) đạt GTNN.
Tìm m để pt có 2 nghiệm \(x_1,x_2\) là các số nguyên.
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp ( O ). Tiếp tuyến tại A cắt BC tại S. I là trung điểm của BC. Tia OI cắt ( O ) tại D. AD cắt BC tại E. Vẽ đường kính DF của (O). SF cắt (O) tại M. CM : SE là tiếp tuyến của đường tròn ngoại tiếp tam giác MEF.
Cho phương trình : \(x^2-2\left(m+1\right)x-12=0\)
Tìm m để phương trình có nghiệm x1, x2 thỏa mãn : \(x_1^2-x_2^2-7\cdot2\cdot\left(m+1\right)=0\)