`a.`\(x=\sqrt[3]{-125}+\sqrt[3]{216}\)
\(\Leftrightarrow x=-5+6\)
`<=>x=1` thế vào A, ta được:
\(A=\dfrac{\sqrt{1}-2}{\sqrt{1}+2}=-\dfrac{1}{3}\)
`b.`\(A>\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>\dfrac{1}{3}\)
\(\Leftrightarrow3\sqrt{x}-6>\sqrt{x}+2\)
\(\Leftrightarrow2\sqrt{x}>8\)
\(\Leftrightarrow\sqrt{x}>4\)
\(\Leftrightarrow x>16\)
`c.` \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+2}+\dfrac{10}{2-\sqrt{x}}+\dfrac{4}{x-4}\)
\(B=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)-10\left(\sqrt{x}+2\right)+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x+\sqrt{x}-6-10\sqrt{x}-20+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-9\sqrt{x}-22}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-11\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}-11}{\sqrt{x}-2}\) ( sửa đề )
\(B=\dfrac{\sqrt{x}-2-9}{\sqrt{x}-2}=1-\dfrac{9}{\sqrt{x}-2}\)
Để B nguyên thì \(\dfrac{9}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}-2\ge-2\)
`@`\(\sqrt{x}-2=-1\Rightarrow\sqrt{x}=1\Rightarrow x=1\left(tm\right)\)
`@`\(\sqrt{x}-2=1\Rightarrow\sqrt{x}=3\Rightarrow x=9\left(tm\right)\)
`@`\(\sqrt{x}-2=3\Rightarrow\sqrt{x}=5\Rightarrow x=25\left(tm\right)\)
`@`\(\sqrt{x}-2=9\Rightarrow\sqrt{x}=11\Rightarrow x=121\left(tm\right)\)
Vậy \(x\in\left\{1;9;25;121\right\}\) thì B nguyên
`d.`\(P=A.B\)
\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}.\dfrac{\sqrt{x}-11}{\sqrt{x}-2}\)
\(P=\dfrac{\sqrt{x}-11}{\sqrt{x}+2}\)
\(P=\dfrac{\sqrt{x}+2-13}{\sqrt{x}+2}=1-\dfrac{13}{\sqrt{x}+2}\)
Để P nguyên thì \(\dfrac{13}{\sqrt{x}+2}\in Z\Rightarrow\sqrt{x}+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Mà \(\sqrt{x}+2\ge2\)
`@`\(\sqrt{x}+2=13\Rightarrow\sqrt{x}=11\Rightarrow x=121\left(tm\right)\)
Vậy \(x=121\) thì P nguyên