`a.`\(2+\sqrt{2x-1}=x\); \(\left(x\ge2\right)\)
\(\Leftrightarrow\sqrt{2x-1}=x-2\)
\(\Leftrightarrow\left(\sqrt{2x-1}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow2x-1=x^2-4x+4\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy \(S=\left\{5\right\}\)
`b.`\(\sqrt{x+1}-\sqrt{x-2}=1\); \(\left(x\ge2\right)\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+1+x-2-2\sqrt{\left(x+1\right)\left(x-2\right)}=1\)
\(\Leftrightarrow2x-2=2\sqrt{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow x-1=\sqrt{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2-2x+1=\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow x^2-2x+1=x^2-x-2\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
`c.`\(x^2+2x+\sqrt{2x^2+4x+1}=1\)
\(ĐK:2x^2+4x+1\ge0\)
\(\Leftrightarrow x^2+2x-1+\sqrt{2x^2+4x+1}=0\)
Đặt \(x^2+2x=t\) \(\Rightarrow2x^2+4x=2t\)
Ptr trở thành:
\(t-1+\sqrt{2t+1}=0\)
\(\Leftrightarrow\sqrt{2t+1}=1-t\) \(\left(t\le1\right)\)
\(\Leftrightarrow2t+1=1-2t+t^2\)
\(\Leftrightarrow t^2-4t=0\)
\(\Leftrightarrow t\left(t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\left(tm\right)\\t=4\left(ktm\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) (tm)
Vậy \(S=\left\{0;-2\right\}\)