`a.` Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
`=>` Tam giác ABC vuông tại A
`b.` Xét tam giác ABC vuông A, đcao AH:
`@`\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
`@`\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
`@`\(CH=BC-BH=10-3,6=6,4\left(cm\right)\)
`c.` Áp dụng t/c đường phân giác, ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{AB+AC}{BC}=\dfrac{6+8}{10}=\dfrac{14}{10}\)
\(\Rightarrow BD=6:\dfrac{14}{10}=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=8:\dfrac{14}{10}=\dfrac{40}{7}\left(cm\right)\)
\(HD=HC-CD=6,4-\dfrac{40}{7}=\dfrac{24}{35}\left(cm\right)\)