\(x^2+2\left(m-1\right)x+m^2-m=0\)
\(\text{∆}=\left[2\left(m-1\right)\right]^2-4\left(m^2-m\right)\)
\(=4m^2-8m+4-4m^2+4m\)
\(=-4\left(m-1\right)>0\)
\(\Rightarrow m-1< 0\)\(\Rightarrow m< 1\)
Vì pt có 2 nghiệm phân biệt, áp dụng hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2m+2\\x_1.x_2=m^2-m\end{matrix}\right.\)
Ta có:
\(x_1^2+x^2_2-7x_1.x_2=10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-9x_1.x_2=10\)
\(\Leftrightarrow\left(-2m+2\right)^2-9\left(m^2-m\right)=10\)
\(\Leftrightarrow4m^2-8m+4-9m^2+9m=10\)
\(\Leftrightarrow-5m^2+m+4=10\)
\(\Leftrightarrow-5m^2+m-6=0\)
\(\text{∆}=1^2-4.\left(-5\right).\left(-6\right)=-119< 0\)
⇒ pt vô nghiệm