HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\left[\left(3^{14}\times69+3^{14}\times12\right):3^{16}-7\right]:2^4\)
\(=\left[3^{14}\left(69+12\right):3^{16}-7\right]:2^4\)
\(=\left[3^{14}.81:3^{16}-7\right]:2^4\)
\(=\left[3^{14}.3^4:3^{16}-7\right]:2^4\)
\(=\left[3^2-7\right]:2^4\)
\(=2:2^4\)
\(=\dfrac{2}{16}=\dfrac{1}{8}\)
Cảm ơn bạn :>
\(D=1+3+3^2+3^3+3^4+...+3^{2022}\)
\(3D=3.\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)
\(3D=3+3^2+3^3+3^4+3^5+...+3^{2023}\)
\(3D-D=\left(3+3^2+3^3+3^4+3^5+...+3^{2023}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)
\(2D=\left(3^{2023}-1\right)\)
\(D=\left(3^{2023}-1\right):2\)
Ta có:
\(5^{102}=5^{2.51}=\left(5^2\right)^{51}=25^{51}\)
\(\Rightarrow5^{102}=25^{51}\)
What time do you have breakfast?
\(\Rightarrow\) Bắt đầu bằng What
\(S=7+7^2+7^3+...7^{20}\)
Ta có: \(7S=7.\left(7+7^2+7^3+...+7^{20}\right)\)
\(7S=7^2+7^3+7^4+...+7^{21}\)
\(7S-S=\left(7^2+7^3+7^4+...+7^{21}\right)-\left(7+7^2+7^3+...+7^{20}\right)\)
\(6S=\left(7^{21}-7\right)\)
\(S=\left(7^{21}-7\right):6\)
Chúc bạn học tốt