Cho \(u = u(x),v = v(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
A. \((uv)' = u'v'\)
B. \((uv)' = uv'\)
C. \((uv)' = u'v\)
D. \((uv)' = u'v + uv'\)
Cho \(u = u(x),v = v(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
A. \((uv)' = u'v'\)
B. \((uv)' = uv'\)
C. \((uv)' = u'v\)
D. \((uv)' = u'v + uv'\)
Cho \(u = u(x),v = v(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
A. \(\left( {\frac{u}{v}} \right)' = \frac{{u'}}{{v'}}\) với \(v = v(x) \ne 0,v = v'(x) \ne 0\)
B. \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{v}\) với \(v = v(x) \ne 0\)
C. \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\) với \(v = v(x) \ne 0\)
D. \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{v'}}\) với \(v = v(x) \ne 0;\,\,v' = v'(x) \ne 0\)
Thảo luận (1)Hướng dẫn giảiPhát biểu C đúng.
(Trả lời bởi Hà Quang Minh)
Tính đạo hàm của mỗi hàm số sau:
a) \(y = \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right)\)
b) \(y = \frac{1}{{ - 2x + 5}}\)
c) \(y = \sqrt {4x + 5} \)
d) \(y = \sin x\cos x\)
e) \(y = x{e^x}\)
f) \(y = {\ln ^2}x\)
Thảo luận (1)Hướng dẫn giảia: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)
\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)
\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)
\(=5x^4+8x^3-9x^2-12x\)
b: y=1/-2x+5
=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)
c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)
d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)
\(=cos^2x-sin^2x=cos2x\)
e: \(y=x\cdot e^x\)
=>\(y'=e^x+x\cdot e^x\)
f: \(y=ln^2x\)
=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Tính đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 2{x^4} - 3{x^3} + 5{x^2}\)
b) \(y = \frac{2}{{3 - x}}\)
c) \(y = \sin 2x\cos x\)
d) \(y = {e^{ - 2x + 3}}\)
e) \(y = \ln (x + 1)\)
f) \(y = \ln ({e^x} + 1)\)
Thảo luận (3)Hướng dẫn giải\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)
(Trả lời bởi Hà Quang Minh)
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức \(v(t) = 2t + {t^2}\), trong đó t > 0, t tính bằng giây và v(t) tính bằng m/s. Tìm gia tức thời của chất điểm:
a) Tại thời điểm t = 3(s)
b) Tại thời điểm mà vận tốc của chất điểm bằng 8 m/s
Thảo luận (1)Hướng dẫn giảiPhương trình gia tốc là: \(a\left(t\right)=v'\left(t\right)=2t+2\)
a, Tại thời điểm t = 3(s), gia tốc tức thời là: \(a\left(3\right)=2\cdot3+2=8\left(m/s^2\right)\)
b, Vận tốc của chất điểm bằng 8
\(\Rightarrow t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
Vậy khi t = 8s thì chất điểm đạt vận tốc 8m/s.
(Trả lời bởi Hà Quang Minh)
Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động \(x = 4\cos \left( {\pi t - \frac{{2\pi }}{3}} \right) + 3\), trong đó t tính bằng giây và x tính bằng centimet
a) Tìm vận tốc tức thời và gia tốc tức thời của con lắc tại thời điểm t (s)
b) Tìm thời điểm mà vận tốc tức thời của con lắc bằng 0.
Thảo luận (1)Hướng dẫn giảia) Vận tốc tức thời của con lắc: \(v(t) = - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
Gia tốc tức thời của con lắc: \(a(t) = - 4{\pi ^2}\cos \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
b) Tại vận tốc tức thời của con lắc bằng 0, ta có:
\( - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \pi t - \frac{{2\pi }}{3} = 0 \Leftrightarrow t = \frac{2}{3}\)
Với \(t = \frac{2}{3} \Rightarrow a(t) = - \,4{\pi ^2}\cos \left( {\pi .\frac{2}{3} - \frac{2}{3}\pi } \right) = - \,4{\pi ^2}\)
(Trả lời bởi Hà Quang Minh)