Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau:
a) \(y = {x^3} - 3{x^2} + 3x - 1\);
b) \(y = {x^4} - 2{x^2} - 1\);
c) \(y = \frac{{2x - 1}}{{3x + 1}}\);
d) \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).
Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau:
a) \(y = {x^3} - 3{x^2} + 3x - 1\);
b) \(y = {x^4} - 2{x^2} - 1\);
c) \(y = \frac{{2x - 1}}{{3x + 1}}\);
d) \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:
a) \(y = \frac{{2x + 1}}{{3x - 2}}\) trên nửa khoảng \(\left[ {2; + \infty } \right)\);
b) \(y = \sqrt {2 - {x^2}} \);
Thảo luận (1)Hướng dẫn giảia) Ta có: \(y' = \frac{{ - 7}}{{{{\left( {3x - 2} \right)}^2}}} < 0\;\forall x \in \left[ {2; + \infty } \right)\)
Nên \(\mathop {\max }\limits_{\left[ {2; + \infty } \right)} y = y\left( 2 \right) = \frac{{2.2 + 1}}{{3.2 - 2}} = \frac{5}{4}\) , hàm số không có giá trị nhỏ nhất trên nửa khoảng \(\left[ {2; + \infty } \right)\).
b) Tập xác định: \(\left[ { - \sqrt 2 ;\sqrt 2 } \right]\).
\(y' = \frac{{ - 2x}}{{2\sqrt {2 - {x^2}} }} = \frac{{ - x}}{{\sqrt {2 - {x^2}} }},y' = 0 \Leftrightarrow x = 0\) (thỏa mãn)
\(y\left( { - \sqrt 2 } \right) = y\left( {\sqrt 2 } \right) = 0;y\left( 0 \right) = \sqrt 2 \)
Do đó, \(\mathop {\min }\limits_{\left[ { - \sqrt 2 ;\sqrt 2 } \right]} y = y\left( { - \sqrt 2 } \right) = y\left( {\sqrt 2 } \right) = 0;\mathop {\max }\limits_{\left[ { - \sqrt 2 ;\sqrt 2 } \right]} y = y\left( 0 \right) = \sqrt 2 \)
(Trả lời bởi Hà Quang Minh)
Tìm các tiệm cận của mỗi đồ thị hàm số sau:
a) \(y = \frac{{3x - 2}}{{x + 1}}\);
b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\).
Thảo luận (1)Hướng dẫn giảia) Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x - 2}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x - 2}}{{x + 1}} = + \infty \)
Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) là đường thẳng \(x = - 1\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x - 2}}{{x + 1}} = 3\); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x - 2}}{{x + 1}} = 3\) nên tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) đường thẳng \(y = 3\).
b) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \)
Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(x = \frac{1}{2}\).
Ta có: \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}} = \frac{x}{2} + \frac{5}{4} + \frac{1}{{4\left( {2x - 1} \right)}}\)
Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\), \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\)
Vậy tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(y = \frac{x}{2} + \frac{5}{4}\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \) nên đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) không có tiệm cận ngang.
(Trả lời bởi Hà Quang Minh)
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = - {x^3} + 6{x^2} - 9x + 12\);
b) \(y = \frac{{2x - 1}}{{x + 1}}\);
c) \(y = \frac{{{x^2} - 2x}}{{x - 1}}\).
Thảo luận (1)Hướng dẫn giảia) 1. Tập xác định: \(D = \mathbb{R}\)
2. Sự biến thiên:
Ta có: \(y' = - 3{x^2} + 12x - 9,y' = 0 \Leftrightarrow - 3{x^2} + 12x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Trên khoảng \(\left( {1;3} \right)\), \(y' > 0\) nên hàm số đồng biến. Trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.
Hàm số đạt cực đại tại \(x = 3\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = 1\), giá trị cực tiểu \({y_{CT}} = 8\)
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 6{x^2} - 9x + 12} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( { - 1 + \frac{6}{x} - \frac{9}{{{x^2}}} + \frac{{12}}{{{x^3}}}} \right)} \right] = + \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 6{x^2} - 9x + 12} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( { - 1 + \frac{6}{x} - \frac{9}{{{x^2}}} + \frac{{12}}{{{x^3}}}} \right)} \right] = - \infty \)
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 12\) với trục tung là (0; 12).
Đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 12\) đi qua các điểm (1; 8); (3; 12); (4; 8).
Đồ thị hàm số có tâm đối xứng là điểm (2; 10).
b) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)
2. Sự biến thiên:
\(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}} > 0\forall x \ne - 1\)
Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Hàm số không có cực trị.
Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x + 1}} = 2;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x + 1}} = 2\)
\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 1}}{{x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 1}}{{x + 1}} = - \infty \)Do đó, đồ thị hàm số nhận đường thẳng \(x = - 1\) làm tiệm cận đứng và đường thẳng \(y = 2\) làm tiệm cận ngang.
Bảng biến thiên:
3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là \(\left( {0; - 1} \right)\).
\(y = 0 \Leftrightarrow \frac{{2x - 1}}{{x + 1}} = 0 \Leftrightarrow x = \frac{1}{2}\)
Giao điểm của đồ thị hàm số với trục hoành là điểm \(\left( {\frac{1}{2};0} \right)\).
Đồ thị hàm số nhận giao điểm I(-1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
c) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ 1 \right\}\)
2. Sự biến thiên:
Ta có: \(y = \frac{{{x^2} - 2x}}{{x - 1}} = x - 1 - \frac{1}{{x - 1}}\)
\(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{{\left( {x - 1} \right)}^2} + 1}}{{{{\left( {x - 1} \right)}^2}}} > 0\;\forall x \ne 1\)
Do đó, hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
Hàm số không có cực trị.
Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \)
\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \)\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {x - 1 - \frac{1}{{x - 1}} - \left( {x - 1} \right)} \right) = \mathop {\lim }\limits_{x \to + \infty } - \frac{1}{{x - 1}} = 0\)
\(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {x - 1 - \frac{1}{{x - 1}} - \left( {x - 1} \right)} \right) = \mathop {\lim }\limits_{x \to - \infty } - \frac{1}{{x - 1}} = 0\)
Do đó, đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = x - 1\) làm tiệm cận xiên.
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số với trục tung là (0; 0).
\(y = 0 \Leftrightarrow \frac{{{x^2} - 2x}}{{x - 1}} = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\)
Đồ thị hàm số giao với trục hoành tại các điểm (0; 0) và (2; 0)
Đồ thị hàm số nhận giao điểm I(1; 0) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
(Trả lời bởi Hà Quang Minh)
Xét một thấu kính hội tụ có tiêu cự f (H.1.39). Khoảng cách p từ vật đến thấu kính liên hệ với khoảng cách q từ ảnh đến thấu kính bởi hệ thức: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f}\).
a) Viết công thức tính \(q = g\left( p \right)\) như một hàm số của biến \(p \in \left( {f; + \infty } \right)\).
b) Tính các giới hạn \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right),\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right)\) và giải thích ý nghĩa các kết quả này.
Lập bảng biến thiên của hàm số \(q = g\left( p \right)\) trên khoảng \(\left( {f; + \infty } \right)\).
Thảo luận (1)Hướng dẫn giảia) Ta có: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \Rightarrow q = \frac{{pf}}{{p - f}}\). Do đó, \(q = g\left( p \right) = \frac{{pf}}{{p - f}}\) với \(p \in \left( {f; + \infty } \right)\).
b) \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right) = \mathop {\lim }\limits_{p \to + \infty } \frac{{pf}}{{p - f}} = \mathop {\lim }\limits_{p \to + \infty } \frac{f}{{1 - \frac{f}{p}}} = f,\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right) = \mathop {\lim }\limits_{p \to {f^ + }} \frac{{pf}}{{p - f}} = + \infty \)
Ý nghĩa của \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right) = f\): Khoảng cách từ vật đến thấu kính tiến ra vô cùng thì khoảng cách từ ảnh đến thấu kính xấp xỉ tiêu cự.
Ý nghĩa của \(\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right) = + \infty \): Khoảng cách từ vật đến thấu kính tiến gần về tiêu cự f thì khoảng cách từ ảnh đến thấu kính là càng lớn.
c) Ta có: \(q' = g'\left( p \right) = \frac{{ - {f^2}}}{{{{\left( {p - f} \right)}^2}}} < 0\;\forall p \in \left( {f; + \infty } \right)\) nên hàm số nghịch biến trên \(\left( {f; + \infty } \right)\).
Bảng biến thiên:
(Trả lời bởi Hà Quang Minh)
Dân số của một quốc gia sau t (năm) kể từ năm 2023 được ước tính bởi công thức: \(N\left( t \right) = 100{e^{0,012t}}\) (N(t) được tính bằng triệu người, \(0 \le t \le 50\)).
a) Ước tính dân số của quốc gia này vào các năm 2030 và 2035 (kết quả tính bằng triệu người, làm tròn kết quả đến chữ số thập phân thứ ba).
b) Xem N(t) là hàm số của biến số t xác định trên đoạn [0; 50]. Xét chiều biến thiên của hàm số N(t) trên đoạn [0; 50].
c) Đạo hàm của hàm số N(t) biểu thị tốc độ tăng dân số của quốc gia đó (tính bằng triệu người/ năm). Vào năm nào tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/ năm?
Thảo luận (1)Hướng dẫn giảia) Dân số của quốc gia vào năm 2030 là: \(N\left( 7 \right) = 100{e^{0,012.7}} = 100{e^{0,084}} = 108,763\) (triệu người)
Dân số của quốc gia vào năm 2035 là: \(N\left( {12} \right) = 100{e^{0,012.12}} = 100{e^{0,144}} = 115,488\) (triệu người)
b) Trên đoạn [0; 50] ta có: \(N'\left( t \right) = 0,012.100{e^{0,012t}} = 1,2{e^{0,012t}} > 0\;\forall t \in \left[ {0;50} \right]\)
Do đó, hàm số N(t) đồng biến trên đoạn [0; 50].
c) Ta có: \(N'\left( t \right) = 1,2{e^{0,012t}}\)
Với tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/ năm ta có:
\(1,6 = 1,2{e^{0,012t}} \Leftrightarrow {e^{0,012t}} = \frac{4}{3} \Leftrightarrow t = \frac{{250\ln \frac{4}{3}}}{3} \approx 23,97\)
Vậy vào năm 2046 thì tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/ năm.
(Trả lời bởi Hà Quang Minh)
Một đường dây điện được nối từ một nhà máy điện ở A đến một hòn đảo ở C như Hình 1.40. Khoảng cách từ C đến B là 4km. Bờ biển chạy thẳng từ A đến B với khoảng cách là 10km. Tổng chi phí lắp đặt cho 1km dây điện trên biển là 50 triệu đồng, còn trên đất liền là 30 triệu đồng. Xác định vị trí điểm M trên đoạn AB (điểm nối dây từ đất liền ra đảo) để tổng chi phí lắp đặt là nhỏ nhất.
Thảo luận (1)Hướng dẫn giảiĐặt \(MB = x\left( {km,0 \le x \le 10} \right)\), khi đó, \(AM = 10 - x\) (km) và \(MC = \sqrt {M{B^2} + C{B^2}} = \sqrt {{x^2} + 16} \) (km)
Khi đó, chi phí nối điện từ A đến C là: \(f\left( x \right) = 30\left( {10 - x} \right) + 50\sqrt {{x^2} + 16} \) (triệu đồng)
Ta có: \(f'\left( x \right) = - 30 + \frac{{50x}}{{\sqrt {{x^2} + 16} }} = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + 16} }} = \frac{3}{5} \Leftrightarrow 25{x^2} = 9{x^2} + 144 \Leftrightarrow x = 3\) (do \(0 \le x \le 10\))
Ta có: \(f\left( 0 \right) = 500;f\left( 3 \right) = 460,f\left( {10} \right) = 100\sqrt {29} \) nên chi phí nhỏ nhất là 460 triệu đồng khi \(x = 3\)
Vậy M cách B một khoảng 3km trên đoạn AB (điểm nối dây từ đất liền ra đảo) thì tổng chi phí lắp đặt là nhỏ nhất.
(Trả lời bởi Hà Quang Minh)