Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn x?
a) \( - 3x + 7 \le 0;\)
b) \(4x - \frac{3}{2} > 0;\)
c) \({x^3} > 0.\)
Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn x?
a) \( - 3x + 7 \le 0;\)
b) \(4x - \frac{3}{2} > 0;\)
c) \({x^3} > 0.\)
Trong các số -2;0;5, những số nào là nghiệm của bất phương trình \(2x - 10 < 0?\)
Thảo luận (1)Hướng dẫn giảiThay \(x = - 2\) vào bất phương trình \(2x - 10 < 0\) ta được \(2.\left( { - 2} \right) - 10 < 0\) là một khẳng định đúng.
Ta nói \(x = - 2\) là nghiệm của bất phương trình \(2x - 10 < 0.\)
Thay \(x = 0\) vào bất phương trình \(2x - 10 < 0\) ta được \(2.0 - 10 < 0\) là một khẳng định đúng.
Ta nói \(x = 0\) là nghiệm của bất phương trình \(2x - 10 < 0.\)
Thay \(x = 5\) vào bất phương trình \(2x - 10 < 0\) ta được \(2.5 - 10 < 0\) là một khẳng định sai.
Ta nói \(x = 5\) không là nghiệm của bất phương trình \(2x - 10 < 0.\)
Vậy -2; 0 là nghiệm của bất phương trình \(2x - 10 < 0.\)
(Trả lời bởi Hà Quang Minh)
Xét bất phương trình \(5x + 3 < 0.\left( 1 \right)\)
Hãy thực hiện các yêu cầu sau để giải bất phương trình (1):
a) Sử dụng tính chất của bất đẳng thức, cộng vào hai vế của bất phương trình (1) với -3, ta được một bất phương trình, kí hiệu là (2).
b) Sử dụng tính chất của bất đẳng thức, nhân vào hai vế của bất phương trình (2) với \(\frac{1}{5}\) (tức là chia cả hai vế của bất phương trình (2) cho hệ số của x là 5) để tìm nghiệm của bất phương trình.
Thảo luận (1)Hướng dẫn giảia) Cộng cả hai vế của bất phương trình (1) với -3, ta được \(5x + 3 - 3 < 0 - 3\) hay \(5x < - 3\left( 2 \right)\)
b) Nhân cả hai vế của bất phương trình (2) với \(\frac{1}{5}\), ta được \(5x.\frac{1}{5} < - 3.\frac{1}{5}\) hay \(x < \frac{{ - 3}}{5}.\)
Vậy nghiệm của bất phương trình là \(x < \frac{{ - 3}}{5}.\)
(Trả lời bởi Hà Quang Minh)
Giải các bất phương trình:
a) \(6x + 5 < 0;\)
b) \( - 2x - 7 > 0.\)
Thảo luận (1)Hướng dẫn giảia) \(6x + 5 < 0;\)
Ta có \(6x + 5 < 0;\)
\(6x < - 5\) (cộng cả hai vế của bất đẳng thức với -5)
\(x < \frac{{ - 5}}{6}\) (nhân cả hai vế của bất đẳng thức với \(\frac{1}{6}\))
Vậy nghiệm của bất phương trình là \(x < \frac{{ - 5}}{6}\)
b) \( - 2x - 7 > 0.\)
Ta có \( - 2x - 7 > 0.\)
\( - 2x < 7\) (cộng cả hai vế của bất đẳng thức với 7)
\(x > \frac{{ - 7}}{2}\) (nhân cả hai vế của bất đẳng thức với \(\frac{{ - 1}}{2}\))
Vậy nghiệm của bất phương trình là \(x > \frac{{ - 7}}{2}\)
(Trả lời bởi Hà Quang Minh)
Giải các bất phương trình sau:
a) \(5x + 7 > 8x - 5;\)
b) \( - 4x + 3 \le 3x - 1.\)
Thảo luận (1)Hướng dẫn giảia) \(5x + 7 > 8x - 5;\)
Ta có \(5x + 7 > 8x - 5\)
\(\begin{array}{l}5x - 8x > - 5 - 7\\ - 3x > - 12\\x < 4\end{array}\)
Vậy nghiệm của bất phương trình là \(x < 4.\)
b) \( - 4x + 3 \le 3x - 1.\)
Ta có \( - 4x + 3 \le 3x - 1\)
\(\begin{array}{l} - 4x - 3x \le - 1 - 3\\ - 7x \le - 4\\x \ge \frac{4}{7}\end{array}\)
Vậy nghiệm của bất phương trình là \(x \ge \frac{4}{7}.\)
(Trả lời bởi Hà Quang Minh)
Trong một cuộc thi tuyển dụng việc làm, ban tổ chức quy định mỗi người ứng tuyển phải trả lời 25 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi có sẵn bốn đáp án, trong đó chỉ có một đáp án đúng. Người ứng tuyển chọn đáp án đúng sẽ được cộng thêm 2 điểm, chọn đáp án sai bị trừ đi 1 điểm. Ở vòng sơ tuyển, ban tổ chức tặng cho mỗi người dự thi 5 điểm và theo quy định người ứng tuyển phải trả lời hết 25 câu hỏi; người nào có số điểm từ 25 điểm trở lên mới được dự thi vòng tiếp theo. Hỏi người ứng tuyển phải trả lời chính xác ít nhất bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được vào vòng tiếp theo?
Thảo luận (1)Hướng dẫn giảiGọi số câu trả lời đúng của người ứng tuyển là x \(\left( {x \in \mathbb{N},x \le 25} \right)\)
Nên số câu trả lời sai của người ứng tuyển là \(25 - x\)
Số điểm người ứng tuyển nhận được sau khi trả lời đúng x câu là \(2.x\)
Số điểm người ứng tuyển mất đi khi trả lời sai là \(\left( {25 - x} \right).1\)
Ban đầu mỗi người ứng tuyển được tặng 5 đ, vậy người ứng tuyển nhận được số điểm là \(2x - \left( {25 - x} \right).1 + 5 = 3x - 20\)
Để người đó trúng tuyển thì số điểm của người ứng tuyển phải từ 25 điểm trở lên nên ta có bất phương trình \(3x - 20 \ge 25\)
Hay \(3x \ge 45\) nên \(x \ge 15\left( {t/m} \right).\)
Vậy người ứng tuyển phải trả lời đúng ít nhất 15 câu hỏi thì mới được vào vòng ứng tuyển tiếp theo.
(Trả lời bởi Hà Quang Minh)
Giải các bất phương trình sau:
a) \(x - 5 \ge 0;\)
b) \(x + 5 \le 0;\)
c) \( - 2x - 6 > 0;\)
d) \(4x - 12 < 0.\)
Thảo luận (1)Hướng dẫn giảia) \(x - 5 \ge 0;\)
Ta có \(x - 5 \ge 0\) suy ra \(x \ge 5\)
Vậy nghiệm của bất phương trình là \(x \ge 5.\)
b) \(x + 5 \le 0;\)
Ta có \(x + 5 \le 0\) suy ra \(x \le - 5\)
Vậy nghiệm của bất phương trình là \(x \le - 5.\)
c) \( - 2x - 6 > 0;\)
Ta có \( - 2x - 6 > 0\) suy ra \( - 2x > 6\) nên \(x < - 3\)
Vậy nghiệm của bất phương trình là \(x < - 3.\)
d) \(4x - 12 < 0.\)
Ta có \(4x - 12 < 0.\) suy ra \(4x < 12\) nên \(x < 3\)
Vậy nghiệm của bất phương trình là \(x < 3.\)
(Trả lời bởi Hà Quang Minh)
Giải các bất phương trình sau:
a) \(3x + 2 > 2x + 3;\)
b) \(5x + 4 < - 3x - 2.\)
Thảo luận (1)Hướng dẫn giảia) \(3x + 2 > 2x + 3;\)
Ta có \(3x + 2 > 2x + 3\) nên \(3x - 2x > 3 - 2\) suy ra \(x > 1\)
Vậy bất phương trình có nghiệm \(x > 1.\)
b) \(5x + 4 < - 3x - 2.\)
Ta có \(5x + 4 < - 3x - 2\) nên \(5x + 3x < - 2 - 4\) hay \(8x < - 6\) suy ra \(x < \frac{{ - 3}}{4}.\)
Vậy bất phương trình có nghiệm \(x < \frac{{ - 3}}{4}.\)
(Trả lời bởi Hà Quang Minh)
Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 1 tháng là 0,4%. Hỏi nếu muốn có số tiền lãi hàng tháng ít nhất là 3 triệu đồng thì số tiền gửi lãi tiết kiệm ít nhất là bao nhiêu (làm tròn đến triệu đồng)?
Thảo luận (1)Hướng dẫn giảiGọi số tiền gửi lãi tiết kiệm là x (triệu đồng) \(\left( {x > 0} \right)\)
Số tiền lãi mỗi tháng khi gửi x triệu đồng là \(0,4\% x = 0,004x\) (triệu đồng)
Số tiền lãi hàng tháng ít nhất là 3 triệu đồng nên ta có \(0,004x \ge 3\) hay \(x \ge 750\left( {t/m} \right)\)
Vậy cần gửi ít nhất 750 triệu đồng thì số tiền lãi hàng tháng ít nhất là 3 triệu đồng.
(Trả lời bởi Hà Quang Minh)
Một hãng taxi có giá mở cửa là 15 nghìn đồng và giá 12 nghìn đồng cho mỗi kilomet tiếp theo. Hỏi với 200 nghìn đồng thì hành khách có thể di chuyển được tối đa bao nhiêu kilomet (làm tròn đến hàng đơn vị)?
Thảo luận (1)Hướng dẫn giảiGọi số km mà hành khách có thể di chuyển được khi đi taxi là x \(\left( {x > 0} \right)\)
Giá tiền di chuyển x km là \(12.x\) (nghìn đồng)
Giá tiền phải trả khi đi xe taxi là \(15 + 12.x\) (nghìn đồng)
Với số tiền đi taxi tối đa là 200 nghìn đồng nên ta có \(15 + 12.x \le 200\) hay \(12x \le 185\) suy ra \(x \le \frac{{185}}{{12}} \approx 15,417\) hay \(x \le 15,417\).
Vậy số km tối đa hành khách có thể đi taxi được là 15 km.
(Trả lời bởi Hà Quang Minh)