Một hàng rào bao quanh một sân cỏ hình tròn có bán kính 10 m (Hình 1) được ghép bởi 360 phần bằng nhau. Hãy tính:
a) Độ dài của toàn bộ hàng rào
b) Độ dài của mỗi phần hàng rào
c) Độ dài của n phần hàng rào.
Một hàng rào bao quanh một sân cỏ hình tròn có bán kính 10 m (Hình 1) được ghép bởi 360 phần bằng nhau. Hãy tính:
a) Độ dài của toàn bộ hàng rào
b) Độ dài của mỗi phần hàng rào
c) Độ dài của n phần hàng rào.
Tính độ dài cung 72o của một đường tròn bán kính 25 cm.
Thảo luận (1)Hướng dẫn giảiCung 72o , bán kính R = 25 cm có độ dài là:
\(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .25.72}}{{180}} \approx 31,42\)cm.
(Trả lời bởi datcoder)
Tính độ dài của của đoạn hàng rào từ A đến B của sân cỏ trong Hình 3, cho biết \(\widehat {AOB} = {80^o}\).
Thảo luận (1)Hướng dẫn giảiTa có độ dài cung AB = \(\widehat {AOB} = {80^o}\), bán kính R = 10 m có độ dài là:
\(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .10.80}}{{180}} \approx 13,96\) (m)
(Trả lời bởi datcoder)
a) Ta có thể tính diện tích của miếng pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh hay không?
b) Chia một hình tròn bán kính R thành 360 phần bằng nhau.
i) Tính diện tích mỗi phần đó.
ii) Tính diện tích phần hình tròn ghép bởi n phần bằng nhau nó trên (Hình 4b).
Thảo luận (1)Hướng dẫn giảia) Ta có thể tính diện tích của miếng pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh.
b) i) Chia một hình tròn bán kính R thành 360 phần bằng nhau, diện tích mỗi phần đó là: \(\frac{{\pi {R^2}}}{{360}}\).
ii) diện tích phần hình tròn ghép bởi n phần bằng nhau là: \(n.\frac{{\pi {R^2}}}{{360}}\)
(Trả lời bởi datcoder)
Tính diện tích hình quạt tròn với bán kính R = 20 cm, ứng với cung 72o.
Thảo luận (1)Hướng dẫn giảiHình quạt tròn với bán kính R = 20 cm, ứng với cung 72o có diện tích là:
\(S = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi {{.20}^2}.72}}{{360}} \approx 251,33\)(cm2)
(Trả lời bởi datcoder)
Tính diện tích của miếng bánh pizza có dạng hình quạt tròn trong Hình 8. Biết OA = 15 cm và \(\widehat {AOB} = {55^o}\).
Thảo luận (1)Hướng dẫn giảiTa có độ dài cung AB = \(\widehat {AOB} = {55^o}\), bán kính R = 15 m có độ dài là:
\(S = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi {{.15}^2}.55}}{{360}} \approx 108\) cm2.
(Trả lời bởi datcoder)
a) Vẽ đường tròn (C) tâm O bán kính r = 5 cm và đường tròn (C’) tâm O bán kính R = 8 cm.
b) Tính diện tích S của (C) và diện tích S’ của (C’).
c) Hãy cho biết hiệu số (S’ – S) biểu diễn diện tích của phần nào trên Hình 9.
Thảo luận (1)Hướng dẫn giảia) Ta có hình vẽ:
b) Diện tích S của (C) là: \(S = 5^2\pi = 25\pi \approx 78,54 (cm^2)\)
Diện tích S’ của (C’) là \(S’ = 8^2\pi = 64\pi \approx 201,06 (cm^2)\)
c) Hiệu số (S’ – S) biểu diễn diện tích của phần tô màu xanh đậm trong hình 9.
(Trả lời bởi datcoder)
Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm) (kết quả làm tròn đến hàng phần trăm).
Thảo luận (1)Hướng dẫn giảiDiện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm) là:
\(S = \pi ({R^2} - {r^2}) = \pi ({20^2} - {10^2}) = 300\pi \approx 942,48\) cm2.
(Trả lời bởi datcoder)
Cho hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) với R > r. Trên đường tròn (O; R) lấy hai điểm B, C sao cho BC vừa là dây cung của (O; R), vừa là tiếp tuyến của đường tròn (O; r) tại A (Hình 11)
a) Tính độ dài đoạn thẳng BC theo r và R.
b) Cho BC = \(a\sqrt 3 \). Tính diện tích hình khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) theo a.
Thảo luận (1)Hướng dẫn giảia) Vì BC là tiếp tuyến của đường tròn (O; r) tại A nên OA \( \bot \)BC
Xét tam giác OAB vuông tại A , ta có:
AB = \(\sqrt {O{B^2} - O{A^2}} = \sqrt {{R^2} - {r^2}} \) (theo định lý Pythagore)
Tương tự với tam giác OCA vuông tại A, ta có
AC = \(\sqrt {O{C^2} - O{A^2}} = \sqrt {{R^2} - {r^2}} \) (theo định lý Pythagore)
Vậy BC = AB + AC = 2\(\sqrt {{R^2} - {r^2}} \).
b) Ta có BC = 2\(\sqrt {{R^2} - {r^2}} \) = \(a\sqrt 3 \) suy ra \(\sqrt {{R^2} - {r^2}} \) = \(\frac{{a\sqrt 3 }}{2}\)
Diện tích hình khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) theo a là:
\(S = \pi ({R^2} - {r^2})\) = \(\pi {\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = \frac{{3\pi }}{4}{a^2}\).
(Trả lời bởi datcoder)
Tính độ dài các cung \({30^o};{90^o};{120^o}\) của đường tròn (O; 6 cm).
Thảo luận (1)Hướng dẫn giảiTa có độ dài cung \({30^o}\), bán kính R = 6 cm có độ dài là:
\(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .6.30}}{{180}} = \pi \approx 3,14 (cm)\)
Ta có độ dài cung \({90^o}\), bán kính R = 6 cm có độ dài là:
\(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .6.90}}{{180}} = 3\pi \approx 9,42 (cm)\)
Ta có độ dài cung \({120^o}\), bán kính R = 6 cm có độ dài là:
\(l = \frac{{\pi Rn}}{{180}} = \frac{{\pi .6.120}}{{180}} = 4\pi \approx 12,57 (cm)\)
(Trả lời bởi datcoder)