Bài 4. Góc ở tâm. Góc nội tiếp

Khởi động (SGK Cánh Diều - Tập 1 - Trang 111)

Hướng dẫn giải

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Góc có đỉnh thuộc đường tròn và hai cạnh chứa hai dây cung của đường tròn đó được gọi là góc nội tiếp.

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 1 (SGK Cánh Diều - Tập 1 - Trang 111)

Hướng dẫn giải

Hình vẽ góc xOy có đỉnh là tâm O của đường tròn (O) như sau:

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 1 (SGK Cánh Diều - Tập 1 - Trang 111)

Hướng dẫn giải

- Số đo góc ở tâm trong mỗi hình 47a là: \(60^\circ \).

- Số đo góc ở tâm trong mỗi hình 47b là: \(90^\circ \).

- Số đo góc ở tâm trong mỗi hình 47c là: \(150^\circ \).

- Số đo góc ở tâm trong mỗi hình 47d là: \(180^\circ \).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều - Tập 1 - Trang 112)

Hướng dẫn giải

+ Phần được tô màu xanh nằm bên trong góc \(AOB\).

+ Phần được tô màu đỏ nằm bên ngoài góc \(AOB\).

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 2 (SGK Cánh Diều - Tập 1 - Trang 114)

Hướng dẫn giải

- Do số học sinh chọn môn Bóng bàn chiếm 15% số lượng học sinh nên số đo cung nhỏ \(BC\) bằng 15% số đo của cung cả đường tròn.

Vì thế, sđ$\overset\frown{BC}=\frac{15}{100}.360{}^\circ =54{}^\circ $.

Vì số đo của cung nhỏ \(BC\) bằng số đo của góc ở tâm \(\widehat {BOC} = 54^\circ \).

-  Do số học sinh chọn môn Bóng đá chiếm 40% số lượng học sinh nên số đo cung nhỏ \(AD\) bằng 40% số đo của cung cả đường tròn.

Vì thế, sđ$\overset\frown{AD}=\frac{40}{100}.360{}^\circ =144{}^\circ $.

Vì số đo của cung nhỏ \(AD\) bằng số đo của góc ở tâm \(\widehat {DOA} = 144^\circ \).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều - Tập 1 - Trang 115)

Hướng dẫn giải

- Đỉnh của góc \(AIB\) có thuộc đường tròn.

- Hai cạnh của góc chứa hai dây cung \(IA,IB\) của đường tròn.

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 3 (SGK Cánh Diều - Tập 1 - Trang 115)

Hướng dẫn giải

\(\widehat{ABC};\widehat{DEF}\) là hai góc nội tiếp đường tròn (O).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều - Tập 1 - Trang 115)

Hướng dẫn giải

a) Do \(OI = OA = R\) nên tam giác \(IOA\) cân tại \(O\) suy ra \(\widehat {OAI} = \widehat {OIA}\)

Do \(OI = OB = R\) nên tam giác \(IOB\) cân tại \(O\) suy ra \(\widehat {OBI} = \widehat {OIB}\)

b) Xét tam giác \(AOI\) cân tại \(O\) có:

\(\widehat {AOI} + \widehat {OIA} + \widehat {OAI} = 180^\circ  \Rightarrow \widehat {AOI} + \widehat {OIA} + \widehat {OIA} = 180^\circ  \Rightarrow \widehat {AOI} + 2\widehat {OIA} = 180^\circ \)

Xét tam giác \(BOI\) cân tại \(O\)  có:

\(\widehat {BOI} + \widehat {OIB} + \widehat {OBI} = 180^\circ  \Rightarrow \widehat {BOI} + \widehat {OIB} + \widehat {OIB} = 180^\circ  \Rightarrow \widehat {BOI} + 2\widehat {OIB} = 180^\circ \)

c) Ta có: \(\widehat {AOI} + \widehat {AOK} = 180^\circ \) (hai góc kề bù)

\(\widehat {BOI} + \widehat {BOK} = 180^\circ \) (hai góc kề bù)

d) Do \(\widehat {AOI} + 2\widehat {OIA} = 180^\circ \) lại có \(\widehat {AOI} + \widehat {AOK} = 180^\circ \) nên \(2\widehat {OIA} = \widehat {AOK}\)

Do \(\widehat {BOI} + 2\widehat {OIB} = 180^\circ \) lại có \(\widehat {BOI} + \widehat {BOK} = 180^\circ \) nên \(2\widehat {OIB} = \widehat {BOK}\)

Ta có: \(\widehat {OIA} + \widehat {OIB} = \widehat {AIB} \Rightarrow 2\left( {\widehat {OIA} + \widehat {OIB}} \right) = 2\widehat {AIB} \Rightarrow 2\widehat {OIA} + 2\widehat {OIB} = 2\widehat {AIB}\)

Mà \(2\widehat {OIA} = \widehat {AOK},2\widehat {OIB} = \widehat {BOK}\) nên \(\widehat {AOK} + \widehat {BOK} = 2\widehat {AIB} \Rightarrow \widehat {AOB} = 2\widehat {AIB}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 4 (SGK Cánh Diều - Tập 1 - Trang 116)

Hướng dẫn giải

Xét tam giác \(OAB\) có: \(OA = OB = AB = R\).

Suy ra tam giác \(OAB\) là tam giác đều nên \(\widehat {AOB} = 60^\circ \).

Xét đường tròn \(\left( O \right)\): Vì \(\widehat {AOB}\) là góc ở tâm và \(\widehat {ACB}\) là góc nội tiếp cùng chắn cung \(AB\) nên:

\(\widehat {ACB} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.60^\circ  = 30^\circ \).

Vậy \(\widehat {ACB} = 30^\circ \).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 5 (SGK Cánh Diều - Tập 1 - Trang 116)

Hướng dẫn giải

a) Ta thấy: \(\widehat {AIB}\) là góc nội tiếp chắn $\overset\frown{AmB}$ nên $\widehat{AIB}=\frac{1}{2}sđ\overset\frown{AmB}$.

b) Ta thấy: \(\widehat {AKB}\) là góc nội tiếp chắn $\overset\frown{AmB}$ nên $\widehat{AKB}=\frac{1}{2}sđ\overset\frown{AmB}$.

c) Do $\widehat{AIB}=\frac{1}{2}sđ\overset\frown{AmB};\widehat{AKB}=\frac{1}{2}sđ\overset\frown{AmB}$ nên \(\widehat {AIB} = \widehat {AKB}\).

(Trả lời bởi datcoder)
Thảo luận (1)