Tìm \(x\) biết :
a) \(a^2x+x=2a^4-2\) với a là hằng số
b) \(a^2x+3ax+9=a^2\) với a là hằng số, \(a\ne0,a\ne-3\)
Tìm \(x\) biết :
a) \(a^2x+x=2a^4-2\) với a là hằng số
b) \(a^2x+3ax+9=a^2\) với a là hằng số, \(a\ne0,a\ne-3\)
Rút gọn phân thức :
a) \(\dfrac{x^4-y^4}{y^3-x^3}\)
b) \(\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}\)
c) \(\dfrac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}\)
Thảo luận (1)Hướng dẫn giải
Rút gọn phân thức :
\(Q=\dfrac{x^{10}-x^8-x^7+x^6+x^5+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}\)
Thảo luận (1)Hướng dẫn giải\(\frac{x^{10}-x^8-x^7+x^6+x^6+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}=\frac{(x^{10}-x^8+x^6)-(x^7-x^5+x^3)+(x^4-x^2+1)}{ (x^{30}+x^{18}+x^{24})+(x^{12}+x^6+1)} \)
=\(\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+x^6+1)(x^{18}+1 )}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+2x^6+1-x^6) (x^6+1)(x^{12}-x^6+1)}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{ (x^6-x^3+1)(x^6+x^3+1)(x^2+1)(x^4-x^2+1)(x^12-x^6+1 )} \)
=\(\frac{1}{(x^6+x^2+1)(x^2+1)(x^{12}-x^6+1)}\)
(Trả lời bởi Đạt Trần Tiến)