Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn \(\overrightarrow{MA}.\overrightarrow{MB}=0\) thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn \(\overrightarrow{MA}.\overrightarrow{MB}=0\) thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Phần mềm mô phỏng thiết bị thám hiểm đại dương có dạng hình cầu trong không gian Oxyz. Cho biết tọa độ tâm mặt cầu là I(360; 200; 400) và bán kính r = 2 m. Viết phương trình mặt cầu.
Thảo luận (1)Hướng dẫn giảiPhương trình mặt cầu tâm \(I\left( {360;200;400} \right)\), bán kính \(R = 2\) là
\({\left( {x - 360} \right)^2} + {\left( {y - 200} \right)^2} + {\left( {z - 400} \right)^2} = 4\)
(Trả lời bởi datcoder)
Người ta muốn thiết kế một bồn chứa khí hóa lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (S): (x – 6)2 + (y – 6)2 + (z – 6)2 = 25. Phương trình mặt phẳng chứa nắp là (P): z = 10.
a) Tìm tâm và bán kính của bồn chứa.
b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng chứa nắp.
Thảo luận (1)Hướng dẫn giảia) Phương trình bề mặt bồn chứa là \(\left( S \right):{\left( {x - 6} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 6} \right)^2} = 25\), nên bồn chứa là một hình cầu có tâm \(I\left( {6;6;6} \right)\) và bán kính \(R = \sqrt {25} = 5\).
b) Khoảng cách từ tâm bồn chứa \(I\left( {6;6;6} \right)\) đến mặt phẳng chứa nắp \(\left( P \right):z - 10 = 0\) là \(d = \frac{{\left| {0.6 + 0.6 + 1.6 - 10} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 4\).
(Trả lời bởi datcoder)