Làm thế nào để nhân, chia các phân thức đại số?
Làm thế nào để nhân, chia các phân thức đại số?
Nêu quy tắc nhân hai phân số.
Thảo luận (1)Hướng dẫn giảiĐể nhân hai phân số, ta nhân tử với tử và nhân các mẫu với nhau.
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính:
\(a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}}\)
\(b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}} = \\ = \dfrac{{\left( {{x^3} + 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} - 2{\rm{x}} + 1} \right).\left( {{x^2} - x + 1} \right)}}\\ = \dfrac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}.\left( {{x^2} - x + 1} \right)}} = \dfrac{{x + 1}}{{x - 1}}\end{array}\)
\(\begin{array}{l}b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\\ = \dfrac{{\left( {{x^2} - 4{\rm{x}} + 4} \right).2}}{{3{{\rm{x}}^2} - 6{\rm{x}}}} = \dfrac{{{{\left( {x - 2} \right)}^2}.2}}{{3{\rm{x}}\left( {x - 2} \right)}} = \dfrac{{2\left( {x - 2} \right)}}{{3{\rm{x}}}}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Hãy nêu các tính chất của phép nhân phân số.
Thảo luận (1)Hướng dẫn giải* Tính chất giao hoán: \(\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}\)
* Tính chất kết hợp: \(\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{e}{f} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{e}{f}} \right)\)
* Tính chất của pép nhân phân phối với phép cộng:
\(\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{e}{f}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{e}{f}\)
(\(\dfrac{a}{b};\dfrac{c}{d};\dfrac{e}{f}\) là các phân số có nghĩa)
(Trả lời bởi Hà Quang Minh)
Tính một cách hợp lí:
\(a)\dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{{x^2} - 4}}{{x + 1}}.\dfrac{{x - 2}}{{y + 6}}\)
\(b)\left( {\dfrac{1}{{x - 4}} + \dfrac{{2{\rm{x}} + 1}}{{{x^2} - 8{\rm{x}} + 16}}} \right).\dfrac{{x - 4}}{{2{\rm{x}} + 1}}\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}a)\dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{{x^2} - 4}}{{x + 1}}.\dfrac{{x - 2}}{{y + 6}}\\ = \dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{x - 2}}{{y + 6}}.\dfrac{{{x^2} - 4}}{{x + 1}}\\ = \dfrac{{\left( {y + 6} \right).\left( {x - 2} \right).\left( {{x^2} - 4} \right)}}{{\left( {{x^2} - 4{\rm{x}} + 4} \right).\left( {y + 6} \right).\left( {x + 1} \right)}}\\ = \dfrac{{\left( {y + 6} \right).\left( {x - 2} \right).\left( {x - 2} \right)\left( {x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}.\left( {y + 6} \right).\left( {x + 1} \right)}} = \dfrac{{x + 2}}{{x + 1}}\end{array}\)
\(\begin{array}{l}b)\left(\frac{2x+1}{{x - 3}} + \frac{2x+1}{x+3}\right ) .\dfrac{{x^2 - 9}}{{2{\rm{x}} + 1}} \\ = (2x+1) \left ( \frac {1}{x-3} + \frac {1}{x+3} \right ) . \frac {(x-3)(x+3)}{2x + 1} \\ = (2x+1) \frac {x+3 + x - 3}{(x-3)(x+3)} . \frac {(x-3)(x+3)}{2x + 1} \\ = \frac {2x(2x+1)}{(x-3)(x+3)} . \frac {(x-3)(x+3)}{2x +1} \\= 2x \end{array}\)
(Trả lời bởi Hà Quang Minh)
Nêu quy tắc chia hai phân số.
Thảo luận (1)Hướng dẫn giảiMuốn chia phân số \(\dfrac{a}{b}\) cho phân số \(\dfrac{c}{d}\), ta lấy phân số \(\dfrac{a}{b}\) nhân với phân số nghịch đảo của phân số \(\dfrac{c}{d}\):
\(\dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c}\)
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính
\(a)\dfrac{{x + y}}{{y - x}}:\dfrac{{{x^2} + xy}}{{3{{\rm{x}}^2} - 3{y^2}}}\)
\(b)\dfrac{{{x^3} + {y^3}}}{{x - y}}:\left( {{x^2} - xy + {y^2}} \right)\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}a)\dfrac{{x + y}}{{y - x}}:\dfrac{{{x^2} + xy}}{{3{{\rm{x}}^2} - 3{y^2}}} = \dfrac{{x + y}}{{y - x}}.\dfrac{{3{{\rm{x}}^2} - 3{y^2}}}{{{x^2} + xy}}\\ = \dfrac{{\left( {x + y} \right).3\left( {{x^2} - {y^2}} \right)}}{{\left( {y - x} \right).x.\left( {x + y} \right)}}\\ = \dfrac{{\left( {x + y} \right).3\left( {x - y} \right)\left( {x + y} \right)}}{{ - \left( {x - y} \right).x.\left( {x + y} \right)}} = \dfrac{{ - 3\left( {x + y} \right)}}{x}\end{array}\)
\(\begin{array}{l}b)\dfrac{{{x^3} + {y^3}}}{{x - y}}:\left( {{x^2} - xy + {y^2}} \right)\\ = \dfrac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{x - y}}.\dfrac{1}{{{x^2} - xy + {y^2}}} = \dfrac{{x + y}}{{x - y}}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính:
\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}}\)
\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}}\)
\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}}\)
\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right)\)
Thảo luận (1)Hướng dẫn giải\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}} = \dfrac{{3\left( {x + 2} \right).2\left( {x - 2} \right)}}{{4.\left( {x - 2} \right).\left( {x + 2} \right)}} = \dfrac{3}{2}\)
\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}} = \dfrac{{\left( {x - 6} \right)\left( {x + 6} \right)\left( {x + 5} \right)}}{{2\left( {x + 5} \right).\left( { - 1} \right)\left( {x - 6} \right)}} = \dfrac{{x + 6}}{{ - 2}} = \dfrac{{-x- 6}}{{ 2}}\)
\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}} = \dfrac{{\left( {1 - y} \right)\left( {1 + y + {y^2}} \right).5\left( {y + 1} \right)}}{{\left( {y + 1} \right).\left( {{y^2} + y + 1} \right)}} = 5\left( {1 - y} \right)\)
\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right) = \dfrac{{\left( {x + 2y} \right).\left( {2{\rm{x}} - y} \right)}}{{{{\left( {2{\rm{x}} - y} \right)}^2}}} = \dfrac{{x + 2y}}{{2{\rm{x}} - y}}\)
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính:
\(a)\dfrac{{20{\rm{x}}}}{{3{y^2}}}:\left( { - \dfrac{{15{{\rm{x}}^2}}}{{6y}}} \right)\)
\(b)\dfrac{{9{{\rm{x}}^2} - {y^2}}}{{x + y}}:\dfrac{{3{\rm{x}} + y}}{{2{\rm{x}} + 2y}}\)
\(c)\dfrac{{{x^3} + {y^3}}}{{y - x}}:\dfrac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}}\)
\(d)\dfrac{{9 - {x^2}}}{x}:\left( {x - 3} \right)\)
Thảo luận (1)Hướng dẫn giải\(a)\dfrac{{20{\rm{x}}}}{{3{y^2}}}:\left( { - \dfrac{{15{{\rm{x}}^2}}}{{6y}}} \right) = \dfrac{{20{\rm{x}}}}{{3{y^2}}}.\left( { - \dfrac{{6y}}{{15{{\rm{x}}^2}}}} \right) = \dfrac{{20{\rm{x}}.\left( { - 6y} \right)}}{{3{y^2}.15{{\rm{x}}^2}}} = \dfrac{{ - 8}}{{3{\rm{x}}y}}\)
\(b)\dfrac{{9{{\rm{x}}^2} - {y^2}}}{{x + y}}:\dfrac{{3{\rm{x}} + y}}{{2{\rm{x}} + 2y}} = \dfrac{{\left( {3{\rm{x}} - y} \right)\left( {3{\rm{x}} + y} \right)}}{{x + y}}.\dfrac{{2{\rm{x}} + 2y}}{{3{\rm{x}} + y}} = \dfrac{{\left( {3{\rm{x}} - y} \right)\left( {3{\rm{x}} + y} \right).2.\left( {x + y} \right)}}{{(x + y).\left( {3{\rm{x}} + y} \right)}} = 2\left( {3{\rm{x}} - y} \right)\)
\(\begin{array}{l}c)\dfrac{{{x^3} + {y^3}}}{{y - x}}:\dfrac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \dfrac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{y - x}}.\dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{x^2} - xy + {y^2}}}\\ = \dfrac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right).{{\left( {x - y} \right)}^2}}}{{ - (x - y)\left( {{x^2} - xy + {y^2}} \right)}} = \left( {x + y} \right)\left( {y - x} \right) = {{y^2} - {x^2}} \end{array}\)
\(d)\dfrac{{9 - {x^2}}}{x}:\left( {x - 3} \right) = \dfrac{{\left( {3 - x} \right)\left( {3 + x} \right)}}{x}.\dfrac{1}{{x - 3}} = \dfrac{{ - \left( {x - 3} \right)\left( {3 + x} \right)}}{{x.\left( {x - 3} \right)}} = \dfrac{{ - \left( {3 + x} \right)}}{x}.\)
(Trả lời bởi Hà Quang Minh)
Tính một cách hợp lí:
\(a)\dfrac{{{x^2} - 49}}{{{x^2} + 5}}.\left( {\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{{x^2} + 5}}{{x + 7}}} \right)\)
\(b)\dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2{\rm{x}} - 25}}{{x + 1945}}\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}a)\dfrac{{{x^2} - 49}}{{{x^2} + 5}}.\left( {\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{{x^2} + 5}}{{x + 7}}} \right)\\ = \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x + 7}}\\ = x + 7 - \left( {x - 7} \right) = 14\end{array}\)
\(\begin{array}{l}b)\dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\left( {\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{2{\rm{x}} - 25}}{{x + 1945}}} \right)\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x + 2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{x + 1975}}{{x + 1945}} = \dfrac{{19{\rm{x}} + 8}}{{x + 1945}}\end{array}\)
(Trả lời bởi Hà Quang Minh)