Hình 33 minh họa góc quan sát của người phi công và góc quan sát của người hoa tiêu khi hướng dẫn máy bay bay vào vị trí ở sân bay
Theo em dự đoán, hai góc đó có bằng nhau hay không?
Hình 33 minh họa góc quan sát của người phi công và góc quan sát của người hoa tiêu khi hướng dẫn máy bay bay vào vị trí ở sân bay
Theo em dự đoán, hai góc đó có bằng nhau hay không?
Quan sát các Hình 38a, 38b, 38c và đoán xem các đường thẳng nào song song với nhau.
Thảo luận (1)Hướng dẫn giảiHình 38a: a và b song song
Hình 38b: không có 2 đường thẳng nào song song
Hình 38c: m và n song song
(Trả lời bởi Hà Quang Minh)
a) Thực hành vẽ đường thẳng b đi qua điểm M và song song với đường thẳng a ( M \( \notin \) a) bằng ê ke theo các bước sau:
b) Giải thích vì sao đường thẳng b song song với đường thẳng a
Thảo luận (1)Hướng dẫn giảib) Đường thẳng b song song với đường thẳng a vì đường thẳng c cắt 2 đường thẳng a và b tạo ra một cặp góc đồng vị bằng nhau
(Trả lời bởi Hà Quang Minh)
Tìm số đo x trong Hình 43, biết u // v
Thảo luận (1)Hướng dẫn giảiVì u // v nên x = 50\(^\circ \) ( 2 góc so le trong)
(Trả lời bởi Hà Quang Minh)
Quan sát hình 44, biết a // b.
a) So sánh \(\widehat {{M_1}}\) và \(\widehat {{N_3}}\); \(\widehat {{M_4}}\) và \(\widehat {{N_2}}\) ( mỗi cặp góc M1 và N3, M4 và N2 gọi là một cặp góc so le ngoài)
b) Tính: \(\widehat {{M_2}} + \widehat {{N_1}}\) và \(\widehat {{M_3}} + \widehat {{N_4}}\) ( mỗi cặp góc M2 và N1, M3 và N4 gọi là một cặp góc trong cùng phía)
Thảo luận (1)Hướng dẫn giảia) Vì a // b nên \(\widehat {{M_1}} = \widehat {{N_1}}\); \(\widehat {{M_4}} = \widehat {{N_4}}\) ( 2 góc đồng vị) mà \(\widehat {{N_3}} = \widehat {{N_1}}\) ; \(\widehat {{N_4}} = \widehat {{N_2}}\) ( 2 góc đối đỉnh) nên \(\widehat {{M_1}}\) =\(\widehat {{N_3}}\); \(\widehat {{M_4}}\) =\(\widehat {{N_2}}\)
b) Vì a // b nên \(\widehat {{M_2}} = \widehat {{N_2}};\widehat {{M_3}} = \widehat {{N_3}}\) ( 2 góc đồng vị), mà \(\widehat {{N_1}} + \widehat {{N_2}} = 180^\circ ;\widehat {{N_3}} + \widehat {{N_4}} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {{M_2}} + \widehat {{N_1}}\) = 180\(^\circ \); \(\widehat {{M_3}} + \widehat {{N_4}}\)= 180\(^\circ \)
Chú ý:
Nếu đường thẳng c cắt cả hai đường thẳng song song a và b thì:
+ Hai góc so le ngoài bằng nhau
+ Hai góc trong cùng phía có tổng số đo bằng 180\(^\circ \)
(Trả lời bởi Hà Quang Minh)
Quan sát Hình 45.
a) Vì sao hai đường thẳng a và b song song với nhau?
b) Tính số đo góc BCD.
Thảo luận (1)Hướng dẫn giảia) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) ( 2 góc kề bù) nên \(117^\circ + \widehat {{A_2}} = 180^\circ \Rightarrow \widehat {{A_2}} = 180^\circ - 117^\circ = 63^\circ \)
Vì \(\widehat {{A_2}} = \widehat {{D_1}}\) ( cùng bằng 63 độ)
Mà 2 góc này ở vị trí đồng vị
\( \Rightarrow \) a // b (Dấu hiệu nhận biết hai đường thẳng song song) ( đpcm)
b) Vì a // b nên \(\widehat {{B_1}} = \widehat {BCD}\) ( 2 góc so le trong), mà \(\widehat {{B_1}} = 55^\circ \Rightarrow \widehat {BCD} = 55^\circ \)
(Trả lời bởi Hà Quang Minh)
Để đảm bảo an toàn khi đi lại trên cầu thang của ngôi nhà, người ta phải làm lan can. Phía trên của lan can có tay vịn làm chỗ dựa để khi lên xuống cầu thang được thuận tiện. Phía dưới tay vịn là các thanh trụ song song với nhau và các thanh sườn song song với nhau. Để đảm bảo chắc chắn thì các thanh trụ của lan can được gắn vuông góc cố định xuống bậc cầu thang.
Trong Hình 46, góc xOy bằng 144\(^\circ \). Hỏi góc nhọn tạo bởi một thanh sườn với một thanh trụ của lan can là bao nhiêu độ?
Thảo luận (1)Hướng dẫn giảiTa có: \(\widehat{xOa}+\widehat{aOy}=\widehat{xOy} \Rightarrow \widehat{aOy}=144^0-90^0=54^0\)
Vì AB // Oy nên \(\widehat {aOy} = \widehat {{A_2}}\) ( 2 góc đồng vị) \(\Rightarrow \widehat {{A_2}} = 54^\circ \)
Vì a // b nên \(\widehat {{B_1}} = \widehat {{A_2}}\) ( 2 góc đồng vị) \(\Rightarrow \widehat {{B_1}} = 54^\circ \)
(Trả lời bởi Hà Quang Minh)