Xét phương trình \(a{x^2} + bx + c = 0(a \ne 0)\). Giả sử phương trình đó có 2 nghiệm là \({x_1},{x_2}.\) Tính \({x_1} + {x_2};{x_1}.{x_2}\) theo các hệ số \(a,b,c.\)
Xét phương trình \(a{x^2} + bx + c = 0(a \ne 0)\). Giả sử phương trình đó có 2 nghiệm là \({x_1},{x_2}.\) Tính \({x_1} + {x_2};{x_1}.{x_2}\) theo các hệ số \(a,b,c.\)
Cho phương trình \( - 4{x^2} + 9x + 1 = 0\).
a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)
b) Tính \({x_1} + {x_2};{x_1}.{x_2}\).
c) Tính \({x_1}^2 + {x_2}^2\).
Thảo luận (1)Hướng dẫn giảia) Phương trình có các hệ số: \(a = - 4;b = 9;c = 1\)
\(\Delta = {9^2} - 4.\left( { - 4} \right).1 = 97 > 0\)
Vì \(\Delta > 0\)nên phương trình đã cho có 2 nghiệm phân biệt (đpcm).
b) Áp dụng Định lý Viète, ta có:
\(\begin{array}{l}{x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{ - 9}}{{ - 4}} = \frac{9}{4}\\{x_1}.{x_2} = \frac{c}{a} = \frac{1}{{ - 4}} = \frac{{ - 1}}{4}\end{array}\)
c) Ta có: \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2}\) (1)
Thay \({x_1} + {x_2} = \frac{9}{4},{x_1}.{x_2} = \frac{{ - 1}}{4}\) vào (1) ta được:
\({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2} = {\left( {\frac{9}{4}} \right)^2} - 2.\left( {\frac{{ - 1}}{4}} \right) = \frac{{89}}{16}\)
(Trả lời bởi datcoder)
Giải phương trình \(4{x^2} - 7x + 3 = 0\).
Thảo luận (1)Hướng dẫn giảiPhương trình có các hệ số \(a = 4;b = - 7;c = 3\).
Ta thấy: \(a + b + c = 4 - 7 + 3 = 0\) nên phương trình có nghiệm: \({x_1} = 1,{x_2} = \frac{3}{4}\)
(Trả lời bởi datcoder)
Giải phương trình \(2{x^2} - 9x - 11 = 0\).
Thảo luận (1)Hướng dẫn giảiPhương trình có các hệ số \(a = 2;b = - 9;c = - 11.\)
Ta thấy \(a - b + c = 2 - ( - 9) - 11 = 0\) nên phương trình có nghiệm là \({x_1} = - 1,{x_2} = \frac{{ - ( - 11)}}{2} = \frac{{11}}{2}.\)
(Trả lời bởi datcoder)
Cho hai số có tổng bằng 5 và tích bằng 6.
a) Gọi một số là x. Tính số còn lại theo x.
b) Lập phương trình bậc hai ẩn x.
Thảo luận (1)Hướng dẫn giảia) ĐK: \(x \in R\)
Vì hai số có tổng bằng 5 nên số còn lại là \(5 - x\).
b) Hai số có tích bằng 6 nên ta được phương trình:
\(\begin{array}{l}x.(5 - x) = 6\\ - {x^2} + 5x = 6\\{x^2} - 5x + 6 = 0\end{array}\)
(Trả lời bởi datcoder)
Giải bài toán ở phần mở đầu:
Đà Lạt là thành phố du lịch, có khí hậu rất mát mẻ. Nơi đây trồng rất nhiều loại hoa. Để trồng hoa, người ta thường tạo các nhà kính được bao quanh bởi hàng rào dạng hình chữ nhật và tạo mái che bên trên. Giả sử một nhà kính có độ dài các hàng rào bao quanh là 68m, diện tích trồng hoa là 240m2.
Làm thế nào để xác định được chiều dài, chiều rộng của mảnh vườn trồng hoa nói trên?
Thảo luận (1)Hướng dẫn giảiGọi 2 kích thước của mảnh vườn hình chữ nhật là \(x_1;x_2\) (m), \(x_1;x_2 > 0\)
Theo đề bài ta có: \(x_1 + x_2 = 68 : 2 = 34\) và \(x_1.x_2 = 240\)
Khi đó \(x_1;x_2\) là nghiệm của phương trình: \(x^2 - 34x + 240\)
Xét \(\Delta ' = (-17)^2 - 1.240 = 49 > 0.\)
Nên phương trình có hai nghiệm phân biệt \(x_1 = \frac{-(-17) + \sqrt {49}}{1} = 24\); \(x_2 = \frac{-(-17) - \sqrt {49}}{1} = 10\) (TM)
Vậy chiều dài là 24m, chiều rộng là 10m.
(Trả lời bởi datcoder)
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) thì:
A. \({x_1} + {x_2} = - \frac{b}{a};{x_1}.{x_2} = - \frac{c}{a}\)
B. \({x_1} + {x_2} = \frac{c}{a};{x_1}.{x_2} = - \frac{b}{a}\)
C. \({x_1} + {x_2} = \frac{b}{a};{x_1}.{x_2} = - \frac{c}{a}\)
D. \({x_1} + {x_2} = - \frac{b}{a};{x_1}.{x_2} = \frac{c}{a}\)
Thảo luận (1)Hướng dẫn giảiĐáp án D.
(Trả lời bởi datcoder)
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
b) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
c) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
d) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
Thảo luận (1)Hướng dẫn giảiChọn đáp án a) và c).
(Trả lời bởi datcoder)
Giải thích vì sao nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có 2 nghiệm là 2 số trái dấu nhau.
Thảo luận (1)Hướng dẫn giảiXét phương trình có 2 nghiệm phân biệt có \(ac < 0\) do đó a và c trái dấu, suy ra \({x_1}.{x_2} = \frac{c}{a} < 0\)
Vậy nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có 2 nghiệm là 2 số trái dấu nhau.
(Trả lời bởi datcoder)
Cho phương trình \(2{x^2} - 3x - 6 = 0\).
a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)
b) Tính \({x_1} + {x_2};{x_1}.{x_2}\). Chứng minh cả 2 nghiệm \({x_1},{x_2}\) đều khác 0.
c) Tính \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}}\)
d) Tính \({x_1}^2 + {x_2}^2\)
e) Tính \(\left| {{x_1} - {x_2}} \right|.\)
Thảo luận (1)Hướng dẫn giảia) Phương trình có các hệ số \(a = 2;b = - 3;c = - 6\).
\(\Delta = {( - 3)^2} - 4.2.( - 6) = 57 > 0\)
Vậy phương trình luôn có 2 nghiệm phân biệt.
b) Áp dụng định lý Viète, ta có:
\({x_1} + {x_2} = \frac{{ - ( - 3)}}{2} = \frac{3}{2};{x_1}.{x_2} = \frac{{ - 6}}{2} = - 3.\)
Vì \({x_1}.{x_2} = - 3 < 0\) nên phương trình có 2 nghiệm trái dấu.
Vậy cả 2 nghiệm đều khác 0.
c) \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}.{x_2}}} = \frac{3}{2}:\left( { - 3} \right) = \frac{{ - 1}}{2}.\)
d) \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( {\frac{3}{2}} \right)^2} - 2.\left( { - 3} \right) = \frac{{33}}{4}.\)
e) Xét \({\left( {\left| {{x_1} - {x_2}} \right|} \right)^2} = {x_1}^2 + {x_2}^2 - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} \)
\(= {\left( {\frac{3}{2}} \right)^2} - 4.\left( { - 3} \right) = \frac{{57}}{4}.\)
Vậy \(\left| {{x_1} - {x_2}} \right| = \sqrt {{{\left| {{x_1} - {x_2}} \right|}^2}} = \frac{{\sqrt {57} }}{2}.\)
(Trả lời bởi datcoder)