Bài 21. Giải bài toán bằng cách lập phương trình

Bài tập 6.33 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 27)

Hướng dẫn giải

Gọi số áo mỗi ngày xưởng phải may theo kế hoạch là x (chiếc), điều kiện: \(x \in \mathbb{N}*\).

Theo kế hoạch, số ngày may xong 1 500 chiếc áo là: \(\frac{{1\;500}}{x}\) (ngày).

Thực tế, mỗi ngày xưởng may số chiếc áo là: \(x + 10\) (chiếc).

Thực tế, 1 320 chiếc áo được may trong số ngày là: \(\frac{{1320}}{{x + 10}}\) (ngày)

Vì ba ngày trước khi hết thời hạn, xưởng may được 1320 áo nên ta có phương trình:

\(\frac{{1\;500}}{x} - 3 = \frac{{1320}}{{x + 10}}\)

Quy đồng mẫu số hai vế của phương trình ta được:

\(\frac{{1\;500\left( {x + 10} \right)}}{{x\left( {x + 10} \right)}} - \frac{{3x\left( {x + 10} \right)}}{{x\left( {x + 10} \right)}} = \frac{{1320x}}{{x\left( {x + 10} \right)}}\)

Nhân cả hai vế của phương trình với \(x\left( {x + 10} \right)\) để khử mẫu ta được phương trình bậc hai:

\(1500\left( {x + 10} \right) - 3x\left( {x + 10} \right) = 1320x\)

\(500x + 5000 - {x^2} - 10x = 440x\)

\({x^2} - 50x - 5000 = 0\)

Ta có: \(\Delta ' = {\left( { - 25} \right)^2} + 5000 = 5625 \Rightarrow \sqrt {\Delta '}  = 75\), phương trình có hai nghiệm phân biệt:

\({x_1} = 25 + 75 = 100\left( {tm} \right);{x_2} = 25 - 75 =  - 50\left( {ktm} \right)\)

Vậy theo kế hoạch, mỗi ngày xưởng đó phải may xong 100 cái áo.

(Trả lời bởi datcoder)
Thảo luận (1)