Tìm các giới hạn sau:
a) \(\lim \frac{{ - 2n + 1}}{n}\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n}\)
c) \(\lim \frac{4}{{2n + 1}}\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}}\)
Tìm các giới hạn sau:
a) \(\lim \frac{{ - 2n + 1}}{n}\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n}\)
c) \(\lim \frac{4}{{2n + 1}}\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}}\)
Tính tổng của các cấp số nhân lùi vô hạn sau:
a) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)
b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)
Thảo luận (1)Hướng dẫn giảia) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = - \frac{1}{2}\) và công bội \(q = - \frac{1}{2}\) nên: \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ... = \frac{{ - \frac{1}{2}}}{{1 - \left( { - \frac{1}{2}} \right)}} = - \frac{1}{3}\)
b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{1}{4}\) và công bội \(q = \frac{1}{4}\) nên: \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ... = \frac{{\frac{1}{4}}}{{1 - \frac{1}{4}}} = \frac{1}{3}\)
(Trả lời bởi Quoc Tran Anh Le)
Viết số thập phân vô hạn tuần hoàn \(0,444...\) dưới dạng một phân số.
Thảo luận (1)Hướng dẫn giải\(0,444... = 0,4 + 0,04 + 0,004 + ...\)
Số \(0,444...\) là tổng của cấp số nhân lùi vô hạn có số hạng đầu bằng \(0,4\) và công bội bằng \(\frac{1}{{10}}\).
Do đó: \(0,444... = \frac{{0,4}}{{1 - \frac{1}{{10}}}} = \frac{4}{9}\)
(Trả lời bởi Quoc Tran Anh Le)
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dài), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).
a) Kí hiệu \({a_n}\) là diện tích của hình vuông thứ \(n\) và \({S_n}\) là tổng diện tích của \(n\) hình vuông đầu tiên. Viết công thức tính \({a_n},{S_n}\left( {n = 1,2,3,...} \right)\) và tìm \(\lim {S_n}\) (giới hạn này nếu có được gọi là tổng diện tích của các hình vuông).
b) Kí hiệu \({p_n}\) là chu vi của hình vuông thứ \(n\) và \({Q_n}\) là tổng chu vi của \(n\) hình vuông đầu tiên. Viết công thức tính \({p_n}\) và \({Q_n}\left( {n = 1,2,3,...} \right)\) và tìm \(\lim {Q_n}\) (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Thảo luận (1)Hướng dẫn giảia) Gọi \({u_n}\) là độ dài cạnh của hình vuông thứ \(n\).
Ta có: \({u_1} = 1;{u_2} = \frac{{{u_1}}}{2}.\sqrt 2 = \frac{{{u_1}}}{{\sqrt 2 }};{u_3} = \frac{{{u_2}}}{2}.\sqrt 2 = \frac{{{u_2}}}{{\sqrt 2 }};...\)
Từ đó ta thấy \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = 1\), công bội \(q = \frac{1}{{\sqrt 2 }}\).
Vậy \({u_n} = {u_1}.{q^{n - 1}} = 1.{\left( {\frac{1}{{\sqrt 2 }}} \right)^{n - 1}} = \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}},n = 1,2,3,...\)
Diện tích của hình vuông thứ \(n\) là: \({a_n} = u_n^2 = {\left( {\frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}}} \right)^2} = \frac{1}{{{2^{n - 1}}}},n = 1,2,3,...\)
Vậy \({S_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{n - 1}}}}\)
Đây là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\), công bội \(q = \frac{1}{2}\).
Vậy \({S_n} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2\left( {1 - \frac{1}{{{2^n}}}} \right)\).
\(\lim {S_n} = \lim 2\left( {1 - \frac{1}{{{2^n}}}} \right) = 2\left( {1 - \lim \frac{1}{{{2^n}}}} \right) = 2\left( {1 - 0} \right) = 2\).
b) Chu vi của hình vuông thứ \(n\) là: \({p_n} = 4{u_n} = 4.\frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}} = \frac{4}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}},n = 1,2,3,...\)
Vậy \({Q_n} = 4 + \frac{4}{{\sqrt 2 }} + \frac{4}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{4}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}} = 4\left( {1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}}} \right)\)
\(1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\), công bội \(q = \frac{1}{{\sqrt 2 }}\).
Vậy \(1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}} = 1.\frac{{1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^n}}}{{1 - \frac{1}{{\sqrt 2 }}}} = \left( {2 + \sqrt 2 } \right)\left( {1 - \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right)\).
\( \Rightarrow {Q_n} = 4\left( {2 + \sqrt 2 } \right)\left( {1 - \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right)\)
\(\begin{array}{l}\lim {Q_n} = \lim 4\left( {2 + \sqrt 2 } \right)\left( {1 - \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right) = 4\left( {2 + \sqrt 2 } \right)\left( {1 - \lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right)\\ & = 4\left( {2 + \sqrt 2 } \right)\left( {1 - 0} \right) = 4\left( {2 + \sqrt 2 } \right)\end{array}\).
(Trả lời bởi Quoc Tran Anh Le)
Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau:
Bắt đầu bằng một hình vuông \({H_0}\) cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông \({H_0}\) thành chính hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình \({H_1}\) (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của \({H_1}\) thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình \({H_2}\) (xem Hình 6c). Tiếp tục quá trình này, ta nhận được một dãy hình \({H_n}\left( {n = 1,2,3,...} \right)\).
Ta có: \({H_1}\) có 5 hình vuông, mỗi hình vuông có cạnh bằng \(\frac{1}{3}\);
\({H_2}\) có \(5.5 = {5^2}\) hình vuông, mỗi hình vuông có cạnh bằng \(\frac{1}{3}.\frac{1}{3} = \frac{1}{{{3^2}}}\);…
Từ đó, nhận được hình \({H_n}\) có \({5^n}\) hình vuông, mỗi hình vuông có cạnh bằng \(\frac{1}{{{3^n}}}\).
a) Tính diện tích \({S_n}\) của \({H_n}\) và tính \(\lim {S_n}\).
b) Tính chu vi \({p_n}\) của \({H_n}\) và tính \(\lim {p_n}\).
(Quá trình trên tạo nên một hình, gọi là một fractal, được coi là có diện tích \(\lim {S_n}\) và chu vi \(\lim {p_n}\)).
Thảo luận (1)Hướng dẫn giảia) \({S_n} = {5^n}.{\left( {\frac{1}{{{3^n}}}} \right)^2} = {5^n}.\frac{1}{{{9^n}}} = {\left( {\frac{5}{9}} \right)^n},n = 1,2,3,...\)
\(\lim {S_n} = \lim {\left( {\frac{5}{9}} \right)^n} = 0\)
b) \({p_n} = {5^n}.4.\frac{1}{{{3^n}}} = 4.{\left( {\frac{5}{3}} \right)^n},n = 1,2,3,...\)
\(\lim {p_n} = \lim \left( {4.{{\left( {\frac{5}{3}} \right)}^n}} \right)\)
Vì \(\lim \frac{1}{{4.{{\left( {\frac{5}{3}} \right)}^n}}} = \frac{1}{4}.\lim {\left( {\frac{3}{5}} \right)^n} = 0\) và \(4.{\left( {\frac{5}{3}} \right)^n} > 0\) với mọi \(n\) nên \(\lim {p_n} = \lim \left( {4.{{\left( {\frac{5}{3}} \right)}^n}} \right) = + \infty \).
(Trả lời bởi Quoc Tran Anh Le)