$5. Tích của một số với một vectơ

Bài 6 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Cách 1:

Gọi O là giao điểm của AC và BD.

 

Ta có:

\(\begin{array}{l}\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {BG}  = \overrightarrow a  + \overrightarrow {BG} ;\\\overrightarrow {CG}  = \overrightarrow {CB}  + \overrightarrow {BG}  = \overrightarrow {DA}  + \overrightarrow {BG}  = - \overrightarrow b  + \overrightarrow {BG} ;\end{array}\)(*)

Lại có: \(\overrightarrow {BD} =\overrightarrow {BA}  + \overrightarrow {AD} =  - \overrightarrow a  + \overrightarrow b \).

\(\overrightarrow {BG} ,\overrightarrow {BD} \) cùng phương và \(\left| {\overrightarrow {BG} } \right| = \frac{2}{3}BO = \frac{1}{3}\left| {\overrightarrow {BD} } \right|\)

\( \Rightarrow \overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right)\)

Do đó (*) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AG}  = \overrightarrow a  + \overrightarrow {BG}  = \overrightarrow a  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\\\overrightarrow {CG}  = -\overrightarrow b  + \overrightarrow {BG}  = -\overrightarrow b  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b ;\end{array} \right.\)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Bài 7 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Dễ thấy: \(\overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {AC}  =  - \overrightarrow {AB}  + \overrightarrow {AC} \)

Ta có:

 +) \(\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BD} \). Mà \(\overrightarrow {BD}  =  - \overrightarrow {DB}  =  - \frac{1}{3}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {AB}  + \left( { - \frac{1}{3}} \right)( - \overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} \)

+) \(\overrightarrow {DH}  = \overrightarrow {DA}  + \overrightarrow {AH}  =  - \overrightarrow {AD}  + \overrightarrow {AH} \).

Mà \(\overrightarrow {AD}  = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} ;\;\;\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} .\)

\( \Rightarrow \overrightarrow {DH}  =  - \left( {\frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} } \right) + \frac{2}{3}\overrightarrow {AB}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

+) \(\overrightarrow {HE}  = \overrightarrow {HA}  + \overrightarrow {AE}  =  - \overrightarrow {AH}  + \overrightarrow {AE} \)

Mà \(\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} ;\;\overrightarrow {AE}  = \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

b)

Theo câu a, ta có: \(\overrightarrow {DH}  = \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \) Hai vecto \(\overrightarrow {DH} ,\overrightarrow {HE} \) cùng phương.

\( \Leftrightarrow \)D, E, H thẳng hàng

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)