$5. Phương trình đường tròn

Bài 2 (SGK Cánh Diều trang 91)

Hướng dẫn giải

a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)

b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15}  = 5\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 91)

Hướng dẫn giải

a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}}  = \sqrt 2 \)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)

c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)

d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)

Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}}  = \sqrt {29} \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)

e) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)  b

Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt 5 \)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Tọa độ tiếp điểm là: \({M_1}\left( {3;5} \right),{M_2}\left( {3; - 12} \right)\)

Phương trình tiếp tuyến của đường tròn đi qua \({M_1}\) là: \( - 5\left( {x - 3} \right) - 12\left( {y - 5} \right) = 0 \Leftrightarrow  - 5x - 12y + 75 = 0\)

Phương trình tiếp tuyến của đường tròn đi qua \({M_2}\) là:

\( - 5\left( {x - 3} \right) + 19(y + 12) = 0 \Leftrightarrow  - 5x + 19y + 243 = 0\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Để đường thẳng tiếp xúc với đường tròn thì \(d\left( {I,\Delta } \right) = R \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2 \Leftrightarrow \left[ \begin{array}{l}m = 5\\m =  - 15\end{array} \right.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Bài 6 (SGK Cánh Diều trang 92)

Hướng dẫn giải

a) Phương trình đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 9\)

b) Khoảng cách từ tâm I đến A là: \(IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( {3 - 1} \right)}^2}}  = \sqrt 5 \)

Do \(IA < 3\) nên điểm A nằm trong đường tròn ranh giới. Vậy nên người A có thể dịch vụ của trạm.

c) Khoảng cách từ tâm I đến B là: \(IB = \sqrt {{{\left( { - 3 + 2} \right)}^2} + {{\left( {4 - 1} \right)}^2}}  = \sqrt {10} \)

Khoảng cách ngắn nhất theo đường chim bay để 1 người ở B di chuyển đến vùng phủ sóng là:

\(IB - R = \sqrt {10}  - 3\left( {km} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 7 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa nằm trên tiếp tuyến của đường tròn tâm I tại điểm M.

Vậy quỹ đạo chuyển động của chiếc đĩa nằm trên đường thẳng có phương trình là:

\(\begin{array}{l}\left( {\frac{{\sqrt {39} }}{{10}} - 0} \right)\left( {x - \frac{{\sqrt {39} }}{{10}}} \right) + \left( {2 - \frac{3}{2}} \right)\left( {y - 2} \right) = 0\\ \Leftrightarrow \frac{{\sqrt {39} }}{{10}}\left( {x - \frac{{\sqrt {39} }}{{10}}} \right) + \frac{1}{2}\left( {y - 2} \right) = 0\\ \Leftrightarrow \sqrt {39} x + 5y - 13,9 = 0\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)