103,CM:\(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{zx}+\frac{z\left(y-x\right)}{xy}}=x+y+z\)
Tính:
\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Cho x,y,z là các số thực thỏa mãn \(x^2+y^2+z^2=1.\) Tìm giá trị lớn nhất của biểu thức:
\(M=2\left(xy+yz+xz\right)+\left(xy-xz\right)^2+\left(yz-xy\right)^2+\left(xz-yz\right)^2\)
CMR: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
chứng minh đẳng thức sau
a,\(\frac{x^2+3xy}{x^2-9y^2}+\frac{2x^2-5xy-3y^2}{6xy-x^2-9y^2}=\frac{x^2+xz+xy+yz}{3yz-x^2-xz+3xy}\)
b,\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
CMR:
a,\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
b,\(\left(x+y+z\right)^2\ge3\cdot\left(xy+yz+xz\right)\)
Rút gọn
\(\dfrac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\dfrac{x\left(y^2+z\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
Tính
\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
Cho x,y,z là các số thực dương thoản mãn x+y+z=3xyz
Tìm giá trị nhỏ nhất của \(P=\dfrac{yz}{x^3\left(z+2y\right)}+\dfrac{xz}{y^3\left(x+2z\right)}+\dfrac{xy}{z^3\left(y+2x\right)}\)